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Abstract

Approximate Membership Query (AMQ) data structures are critical for high-
throughput systems, yet the industry-standard Bloom filter cannot support
item deletion. This thesis presents the design and implementation of a high-
performance, GPU-accelerated Cuckoo filter, provided as a robust header-only
library. By leveraging efficient algorithms built on atomic operations, the
implementation achieves massive parallelism without the need for explicit
locking.

A comprehensive evaluation across GDDR7 and HBM3 architectures demon-
strates that this Cuckoo filter significantly outperforms state-of-the-art dy-
namic alternatives. It achieves insertion and deletion throughputs orders
of magnitude higher than the GPU Quotient filter (GQF) and the Two-Choice
filter (TCF). Crucially, the results reveal superior scalability: while TCF and
GQF performance stagnates on high-end hardware due to internal latency
bottlenecks, the Cuckoo filter scales linearly with global memory bandwidth.
This characteristic positions it as the optimal solution for next-generation,
bandwidth-rich GPU architectures.

Abstract (German)

Datenstrukturen fiir Approximate Membership Queries (AMQ) sind in Hoch-
durchsatzsystemen unverzichtbar, doch dem weit verbreiteten Bloom-Filter
fehlt die Unterstitzung fir Loschoperationen. Diese Arbeit stellt einen hoch-
performanten, GPU-beschleunigten Cuckoo-Filter vor, der als robuste Header-
only-Bibliothek implementiert wurde. Durch effiziente Algorithmen auf Basis
atomarer Operationen ermdoglicht die Implementierung massive Parallelitat
ohne explizites Locking.

Evaluierungen auf GDDR7- und HBM3-Systemen zeigen, dass der Filter dyna-
mische Alternativen deutlich ubertrifft. Er erzielt Einfiige- und Loschraten,
die um Grofsenordnungen iiber denen des GPU Quotient Filters (GQF) und
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des Two-Choice Filters (TCF) liegen. Ein entscheidender Vorteil ist die Ska-
lierbarkeit: Wahrend die Leistung des TCF und GQF auf moderner Hardware
latenzbedingt stagniert, skaliert der Cuckoo-Filter linear mit der globalen
Speicherbandbreite. Dies macht ihn zur fihrenden Losung fir zukiinftige
GPU-Architekturen mit hoher Speicherbandbreite.
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1.1

Introduction

In the era of big data, the ability to perform set membership queries is a fun-
damental requirement for applications ranging from network traffic analysis
[6] to large-scale distributed systems [35]. Determining whether an element
belongs to a set is a frequent and performance-critical operation. While exact
data structures provide definitive answers, their memory footprint and com-
putational overhead can make them impractical for massive datasets. This
has led to the widespread adoption of probabilistic data structures, which
trade a small, manageable false positive probability for significant gains in
space and time efficiency.

For years, the Bloom filter has been the standard probabilistic data struc-
ture for approximate set membership. Its primary limitation, however, is
the inability to delete elements, making it unsuitable for dynamic datasets.
While there are variations that do support deletion, they incur prohibitive
space overheads that often negate their practical viability. Due to this the
Cuckoo filter has emerged as a powerful alternative, offering native support
for deletions and often superior space efficiency, particularly at low false
positive rates.

Problem Statement

Despite these advantages, the performance of Cuckoo filters on CPUs can
quickly become a bottleneck in high-throughput environments. The sequen-
tial nature of the insertion algorithm, which may involve displacing multiple
existing items, severely limits scalability.

This performance gap motivates the exploration of massively parallel hard-
ware. However, porting a Cuckoo filter to a GPU is not a straightforward
translation, as the algorithm’s reliance on sequential eviction chains and ran-
dom memory accesses conflicts with the GPU’s desire for massive parallelism
and structured, contiguous memory access patterns. This thesis addresses
these architectural mismatches by designing, implementing, and evaluating
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a GPU-accelerated Cuckoo filter. The main objective is to leverage the mas-
sive parallelism of modern GPUs to handle insertions, lookups, and deletions,
thereby achieving a significant performance leap over existing CPU-based
implementations.

Use Cases

The demand for high-speed, dynamic set membership testing shows up across
numerous domains. While CPU-based dynamic filters exist, many modern
applications generate data at a rate that creates a performance bottleneck,
motivating the need for a massively parallel, GPU-accelerated solution. Some
of the areas that could benefit from such a filter are as follows:

* Network Security: Threat intelligence feeds for malicious IPs, URLSs,
and malware signatures are updated continuously, requiring a filter
that supports both insertions and deletions. In high-speed networks
(100Gbps+), a CPU can be overwhelmed by the sheer volume of packets
per second. A GPU-accelerated filter can process large batches of packet
headers or identifiers in parallel, enabling line-rate inspection against
dynamic blacklists in a way that is simply infeasible for CPU-based
solutions. [17, 31, 37]

» Caching Systems: Caches in Content Delivery Networks (CDNs) and
HTTP reverse proxies experience constant churn as items are added
and evicted. A dynamic filter is essential to prevent expensive disk or
network lookups for non-existent objects. When the request rate is in
the millions per second, the CPU can offload these cache-presence checks
to a GPU, processing them in large batches to free up cycles for handling
the actual data I/O. [8, 12]

» Databases and Distributed Systems: Database systems often use filters
to avoid expensive disk lookups for non-existent keys. In a distributed set-
ting, a GPU-accelerated filter could serve as a high-performance shared
resource that tracks the existence of records across multiple nodes, re-
ducing network latency and improving overall query performance. [9,
23, 30, 36]

Chapter 1 Introduction



* Bioinformatics: Genomics and proteomics research involves searching
for patterns or sequences within massive biological datasets. A GPU-
accelerated Cuckoo filter could be used to rapidly pre-screen for the
presence of specific markers before launching more computationally
intensive analyses, significantly speeding up the research pipeline. [15,
22]

1.3 Contributions

This thesis presents a comprehensive study on accelerating probabilistic data
structures using GPUs. The main contributions of this work are as follows:

* High-Performance CUDA Library: The design and implementation of
a parallel Cuckoo filter supporting insertion, lookup, and deletion are
presented. The source code is available as an open-source header-only
library.!

* Advanced Optimisation Techniques: Several optimisation strategies
are explored and evaluated to maximise occupancy and memory band-
width. These include a sorted-insertion algorithm to improve memory
locality, a modified eviction strategy designed to reduce the number of
random memory accesses at high load factors and the ability to swap
out the original XOR-based partial-key Cuckoo hashing for alternatives.

» System-Level Integration Extensions: Moving beyond a simple fil-
ter, two extensions are created to facilitate real-world adoption. First,
an Inter-Process Communication (IPC) wrapper is developed to enable
zero-copy sharing of the filter between processes. Second, a multi-GPU
implementation is provided that transparently partitions data across
multiple devices, allowing the filter to scale beyond the memory limits
of a single card.

* Comprehensive Evaluation: A rigorous analysis is conducted com-
paring the GPU Cuckoo filter against CPU baselines and other GPU-
accelerated filters. The results demonstrate that the implementation
achieves competitive throughput with the Blocked Bloom filter while far
surpassing all other tested dynamic filters.

Available at: https://github.com/tdortman/cuckoo-filter/

1.3 Contributions
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Thesis Structure

Chapter 2

This chapter establishes the foundation for the thesis. It goes over the concepts
of approximate membership query structures, tracing the evolution from the
classic Bloom filter to the Cuckoo filter. Additionally, it examines alternative
modern data structures, such as the Quotient filter and the Two-Choice filter,
to contextualise the research landscape. The chapter also introduces the
principles of GPU computing and the CUDA programming model, highlighting
the specific hardware constraints that influence parallel algorithm design.

Chapter 3

This chapter details the design and implementation of the high-performance
GPU Cuckoo filter library. It documents the parallel algorithms developed
for insertion, lookup, and deletion, explaining how lock-free atomic oper-
ations are utilised to manage parallel accesses. Furthermore, it describes
advanced optimisations for memory locality and system-level extensions, in-
cluding an Inter-Process Communication wrapper and a multi-GPU sharding
mechanism.

Chapter 4

This chapter presents a comprehensive analysis of the implemented data
structure. The filter is benchmarked against CPU and GPU baselines across dif-
ferent hardware architectures (GDDR7 and HBM3). Beyond raw throughput,
the evaluation scrutinises architectural scaling behaviours, analysing the im-
pact of the memory hierarchy (L2 vs. DRAM), hardware utilisation, and cache
efficiency. It also assesses the filter’s reliability through an empirical analysis
of false positive rates and performance-accuracy trade-offs. Furthermore, it
measures the impact of specific algorithmic optimisations, including eviction
policies, bucket sizing, sorted insertion, wider memory loads, and alterna-
tive bucket placement policies. Finally, it validates the system’s real-world
usability through multi-GPU scalability tests and a genomic £-mer indexing
benchmark.

Chapter 5

The final chapter highlights the key findings of the research, summarising
the contributions made to the field of parallel probabilistic data structures. It
critically assesses the limitations of the current implementation and outlines
potential avenues for future research and optimisation.

Chapter 1 Introduction



2.1

2.1.1

Background and Related
Work

Having established the motivation for designing a GPU-accelerated Cuckoo fil-
ter, this chapter provides the necessary background information from its two
relevant domains: probabilistic data structures and parallel computing. The
discussion first traces the algorithmic lineage of the Cuckoo filter, beginning
with the Bloom filter, progressing to the Cuckoo hashing scheme, and ending
in the Cuckoo filter itself. Subsequently, the focus shifts to hardware and
software with an introduction to the GPU architecture, the CUDA program-
ming model, and the key performance considerations essential for developing
efficient parallel algorithms. A firm grasp of both these areas is crucial for
understanding the design choices and implementation challenges addressed
in the remainder of this thesis.

Probabilistic Data Structures

At the heart of this thesis is the need for a dynamic and efficient data structure
for approximate set membership. This section reviews the key structures that
form the basis of the work presented. The analysis begins with the classic
Bloom filter and its locality-optimised variant, which serves as an important
performance baseline. Following this is an explanation of the mechanics
of Cuckoo hashing, the eviction-based strategy that enables the dynamic
properties of the target data structure. Finally, the Cuckoo filter is detailed,
showing how it combines these concepts to create a powerful alternative.

Bloom Filter

Invented in 1970, the Bloom filter [4] has long been the dominant probabilis-
tic data structure for approximate membership query (AMQ) problems. Its
operation is based on a simple yet effective concept: a bit array of size m and
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a set of k independent hash functions. To insert an item, the item is hashed
k times, and each resulting hash value is used as an index to set a bit in the
array to 1. To query for an item’s membership, the item is again hashed &
times. If all corresponding bits in the array are 1, the item is considered to
possibly be in the set. However, if even one bit is 0, the item is definitively not
in the set, as illustrated in Figure 2.1.

{z,y, 2}

Fig. 2.1: An illustration of a Bloom filter’s insertion and lookup mechanism with
m = 11 slots and k£ = 3 hash functions. The set {x,y, z} has been inserted,
setting the corresponding bits in the array to 1. A membership query for
a new item w returns a definitive "no" (guaranteeing no false negatives)
because one of the bits it maps to is 0.

The false positive rate ¢ of a Bloom filter after inserting » items is approxi-
mately:

€~ <1 — e_”k/m>k (2.1)

This rate is optimised by choosing the optimal number of hash functions,
which for a given n and m is:
k="1n2 (2.2)
n

Given a target false positive rate ¢, the number of hash functions used by a
space-optimised Bloom filter is given by:

k = logy(1/¢€) (2.3)

Such a filter uses 1.441og,(1/€) bits per element.

Despite its widespread use, the classic Bloom filter has several notable disad-
vantages:

Chapter 2 Background and Related Work



* No Deletion: The standard implementation does not support the re-
moval of items, as clearing a bit could inadvertently remove other items
that hash to the same location. Variants like the Counting Bloom filter
[12] address this by using counters instead of single bits, but at a signifi-
cant cost to space efficiency.

* Linear Complexity: Lookup and insertion performance is dependent
on the number of hash functions, which scales linearly with m. This can
lead to performance bottlenecks in high-throughput scenarios.

* Poor Memory Locality: The & hash functions produce indices that are
typically scattered randomly across the entire bit array. This leads to
poor cache performance on CPUs and is particularly detrimental on
GPUs, where it prevents efficient memory access.

* Degrading Performance: As the filter fills up and more bits are set to
1, the false positive rate steadily increases, eventually converging to a
point where all queries yield a positive result.

* Suboptimal Space Usage: The optimal space usage for a Bloom filter
is approximately 44% higher than the information theoretical lower
bound for AMQ data structures. Many modern filters, including the
Cuckoo filter, achieve a lower overhead relative to this bound.

2.1.2 Blocked Bloom Filter

To address the issue of poor memory locality, the Blocked Bloom filter was
introduced. As this variant is an important point of comparison in this thesis,
the design warrants its own detailed explanation.

Instead of a single bit array, the Blocked Bloom filter partitions the array into
an array of smaller; independent Bloom filters, called blocks. Each block is
typically sized to fit within a single CPU cache line (e.g., 64 bytes). The hashing
scheme is modified: a single hash function is first used to map an incoming
item to a specific block. Then, the standard 4 hash functions are used to set or
check bits only within that selected block, as shown in Figure 2.2.

The primary advantage of this design is a dramatic improvement in memory
locality. All K memory accesses for a single item are now confined to a small,
contiguous memory region. This is highly beneficial for modern CPU caches
and, more importantly for this thesis, is extremely well-suited to the parallel

2.1 Probabilistic Data Structures
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{z,y, 2}

Block 0 Block 1

w

Fig. 2.2: An illustration of a Blocked Bloom filter. Each item is first mapped to a single
block (e.g., item y maps to Block 0, while = and z map to Block 1). The k hash
functions then operate only within that selected block, improving memory
locality. A query for item w, which maps to Block 0, returns a definitive "no"
as one of its target bits is 0.

memory access patterns of GPUs. When multiple threads process items that
map to the same block, their memory requests can be coalesced into a single
transaction, significantly improving memory bandwidth utilisation.

However, this performance gain comes at the cost of a higher false positive
rate. By partitioning the filter, the Blocked Bloom filter loses the "averaging"
effect of the classic design. If an unlucky distribution of items causes one
block to become heavily saturated, its local false positive rate will increase
dramatically, and this "hotspot" can dominate the overall false positive rate
of the entire structure. Therefore, the Blocked Bloom filter represents a
direct trade-off: sacrificing some statistical efficiency for significantly better
performance, making it a highly relevant baseline for evaluating cache-aware
and GPU-accelerated data structures.

Cuckoo Hashing

Cuckoo hashing, introduced by Pagh and Rodler in 2004 [28], is a powerful
hashing scheme that provides a significant advantage over many others: a
worst-case O(1) lookup time. Its name is derived from the cuckoo bird, which
is known for laying its eggs in the nests of other birds, often forcing the
original occupants out. The scheme’s elegance lies in its simplicity compared

Chapter 2 Background and Related Work



to previous methods that also offered worst-case constant lookup guarantees
[13, 14, 10].

In its original formulation, the scheme uses two independent hash tables, T}
and 7Ty, each of size r, and two independent hash functions #; and hs.

The core invariant of Cuckoo hashing is that for any given item z, it is stored
in one of two possible locations:

Tilh1(z) mod r] or Thlhe(x) mod r|

A lookup operation is therefore guaranteed to run in O(1), as it only requires
checking these two specific locations.

The insertion process is more involved and follows the distinct "cuckoo"
eviction protocol, as illustrated in Figure 2.3. The steps are as follows:

1. For a new item z, its two potential locations i; = h;(x) mod r and
i2 = ha(z) mod r are computed.

2. Ifeither 71 [i1] or T»[i2] is empty, the item is placed there, and the insertion
is complete.

3. If both slots are occupied, an existing item (say y) is evicted from one of
the location (e.g. i) and « is placed there.

4. The evicted item y is then reinserted into its own alternate location. If y
was evicted from T3, it attempts to move to T5[h2(y) mod r]. This move
may, in turn, cause another eviction, leading to a chain of displacements.

5. To prevent infinite loops, a maximum number of evictions is set. If
this limit is reached, the table is considered full, and all items must
be rehashed with a new pair of hash functions, potentially into larger
tables.

The success of this probabilistic scheme hinges on the load factor, the theory
guarantees that if the tables are kept sufficiently sparse. Specifically, if r is
greater than (1 + ¢)n, where n is the number of items, the probability of an
insertion failing and requiring a rehash is very low [27]. This effectively
means the total load factor across both tables should be kept below 50%.

A common and important variant is to use a single table of size m = 2r. This
is more space-efficient and is the model that more closely resembles a Cuckoo

2.1 Probabilistic Data Structures
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: b
s
c 2 ! c
T
(PSR S d
b ';'.'.'.:'.'.'.'.'.'.'.:'.'.'.'.'.; a
i
hi(x) 5
L 5 @ |eeeereeennnennnnd 7B
Before insertion After insertion

Fig. 2.3: llustration of a Cuckoo hashing insertion in a single-table variant. The
incoming item z finds both of its candidate slots occupied. It evicts item
a, triggering a cascading eviction chain until item d is moved to a free slot,
resulting in a new stable arrangement of items in the table.

filter’s implementation. It also introduces the idea of deriving an alternate
location from a current one without storing any extra state.

Pagh and Rodler describe a trick, attributed to John Tromp, that achieves this.
The key insight is to redefine the two potential locations for an item z. Instead
of simply being h;(x) mod m and hy(z) mod m, the locations are defined as:

* i1 = hi(z) mod m
* iy = (ho(z) — hi(x)) mod m

With this specific construction, a function can be used to jump between the
two locations. If an item z is currently at a location 4, its alternate location
can be calculated using the mapping

i’ = (ha(z) — i) mod m (2.4

This works because the transformation is its own inverse for that specific
pair of locations. Applying it to i; yields i5, and applying it again to i, yields ;.
This concept of a state-free mapping is the direct precursor to the partial-key
hashing scheme used in Cuckoo filters.

Chapter 2 Background and Related Work



2.1.4 Cuckoo Filter

The Cuckoo filter, introduced by Fan et al. [11], is a probabilistic data structure
that adapts the principles of Cuckoo hashing to provide a highly space-efficient
and performant alternative to the Bloom filter, most notably by supporting
the deletion of items. It improves upon standard Cuckoo hashing in multiple
ways.

First, instead of storing entire items, a Cuckoo filter only stores a small fin-
gerprint for each item, which is a fixed-size sequence of bits derived from
the item’s hash. This significantly reduces the memory footprint. A direct
consequence, however, is that traditional rehashing is not an option, as the
original items are not available to be re-inserted. Therefore, the filter’s size
and parameters are typically static once it is created.

To further maximise space efficiency, the filter is structured as an array of
buckets. Rather than mapping an item to a single slot, each index in the array
corresponds to a bucket capable of holding a fixed number of fingerprints,
denoted as b (typically b = 4). This design allows the filter to achieve high load
factors by reducing the probability of insertion failures caused by collisions,
a significant improvement over the =~ 50% limit of standard Cuckoo hashing
with single-item slots.

Second, it replaces the standard Cuckoo hashing scheme with partial-key
Cuckoo hashing. This clever technique establishes a dependency between
the two potential bucket locations and the item’s fingerprint. A single hash
function is used to compute an initial location i; and a fingerprint fp. The
alternate location i, is then derived using the XOR operation:

19 = i1 @ hash(fp) (2.5)

Thanks to the nature of XOR, this relationship works both ways, such that
i1 = i @ hash(fp). This allows an evicted fingerprint to calculate its alternate
location from its current position and its own fingerprint alone, an important
feature since the original item is not stored.

2.1 Probabilistic Data Structures 11
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Design and Performance Characteristics

The design of the Cuckoo filter leads to several practical advantages over
Bloom filters and their variants.

» High Space Utilisation: By allowing items to be relocated during in-

sertion, Cuckoo filters can achieve very high load factors. The original
paper demonstrates that with a bucket size of 4, the filter can consis-
tently reach an occupancy of over 95% [11]. The GPU implementation in
this thesis generally prefers slightly larger bucket sizes for performance
reasons, thus consistently reaching a load factor of over 99%.

Space Efficiency vs. False Positive Rate: The false positive rate ¢ of a
Cuckoo filter is directly tied to the fingerprint size f and the bucket size
b. Because a lookup must check up to 2b fingerprints in the worst case,
the false positive rate can be approximated by:

e~ 20/2/ (2.6)

The actual amortised space cost per item, C, is the fingerprint size f
divided by the filter’s load factor «, since the cost of the unoccupied slots
must be distributed among the stored items. The minimal fingerprint
size required to achieve a target rate ¢ is approximately

f > logy(2b/€) = logy(1/€) + logy(2b) 2.7

By substituting this minimal required value for f into the cost definition,
an upper bound for the amortised space cost can be established:

This equation is important as it decomposes the cost into the information-
theoretic lower bound (log,(1/¢)), an overhead term related to the bucket
size (log,(20)), and an efficiency penalty from the load factor (1/a). It
reveals the central trade-off: a larger bucket size b improves the load
factor o but also increases the overhead term, requiring careful tuning

Chapter 2 Background and Related Work



to optimise space. For a target ¢ < 3%, the authors show that a well-
configured Cuckoo filter is more space-efficient than a space-optimised
Bloom filter [11].

» Performance: A key performance advantage is that any lookup, positive
or negative, always reads a fixed number of buckets, resulting in (at
most) two cache line misses. This is a significant improvement over
standard Bloom filters, where the number of memory probes & scales
with the desired false positive rate and can be much larger than two. This
theoretical efficiency translates to exceptional practical performance.
As demonstrated later in the evaluation in Section 4.2.1, the GPU Cuckoo
filter effectively matches the throughput of the highly cache-optimised
Blocked Bloom filter in cache-resident scenarios and even surpasses it for
positive lookups on high-bandwidth architectures, while simultaneously
outperforming all other tested dynamic filters by orders of magnitude.

2.2 GPU Computing

2.2.1

This section introduces the relevant concepts of GPU architectures and the
CUDA programming model. An understanding of these principles is essential
for contextualising the design decisions and performance optimisations dis-
cussed in the subsequent implementation of the parallel Cuckoo filter. While
this thesis targets NVIDIA GPUs using the CUDA framework, the core concepts
of massively parallel processing are applicable to other GPU architectures
and, to a large extent, modern multicore CPUs as well.

The GPU as a Parallel Processor

At its core, a GPU is a specialised processor designed for massive data paral-
lelism. Originally developed to accelerate the computationally intensive task
of rendering graphics, its architecture has evolved to become highly effective
for general-purpose computing.

The primary architectural difference between a CPU and a GPU lies in their
design philosophies. A CPU is optimised for low-latency execution of a single
or a few sequential instruction streams (threads). It dedicates a significant
portion of its silicon to sophisticated flow control and large data caches to

2.2 GPU Computing
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minimize the execution time of a single task. In contrast, a GPU is designed
for high-throughput computing. It makes up for slower single-thread perfor-
mance by executing thousands of threads in parallel, dedicating far more of
its transistors to data processing rather than to data caching and flow control.
Figure 2.4 highlights this difference. For example, a modern NVIDIA Blackwell
architecture GPU can feature over 24,000 cores. This design results in much
higher instruction throughput and memory bandwidth, which is ideal for
problems that can be broken down into many independent sub-problems.

It is important to note that not all parts of a program can be effectively par-
allelised. The portions that can are typically isolated and rewritten as GPU
kernels, which are functions compiled separately for the GPU’s instruction
set. A typical workflow for a GPU-accelerated program looks as follows:

1. Allocate memory on the device (GPU).
2. Copy input data from host memory (CPU’s RAM) to device memory.

3. Launch a kernel on the host, which is executed in parallel by many
threads on the device.

4. Copy the results from device memory back to host memory.

5. Deallocate memory on the device.

This data transfer overhead means that GPUs are most effective for problems
where the computational work significantly outweighs the amount of data
that needs to be transferred.

Core Core
L1 Cache L1 Cache

Core

Core

L1 Cache

L2 Cache

L1 Cache

L2 Cache

L3 Cache

L2 Cache

DRAM

CcPU GPU

Fig. 2.4: The GPU Devotes More Transistors to Data Processing [@26]
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2.2.3

CUDA Programming Model

To manage the massive parallelism of the hardware, NVIDIA developed CUDA
(Compute Unified Device Architecture), a parallel computing platform and
programming model. CUDA provides a set of extensions to the C++ language
that allow developers to write host and device code within the same environ-
ment, simplifying the development process. It also abstracts the hardware
into a logical hierarchy that is more manageable for the programmer.

The basic unit of execution in CUDA is a thread. When a kernel is launched, it
is executed by a vast number of these threads on the GPU. They are organised
into a three-dimensional hierarchy:

* Threads: The smallest execution unit. Each thread executes the same
kernel code but usually operates on different data, identified by its
unique coordinates within a block.

* Blocks: Each block can contain up to 1024 threads, which can work
together by sharing data through fast on-chip shared memory and syn-
chronising their progress.

* Grid: Blocks are organised into a grid. All blocks in a grid execute the
same Kkernel. Blocks are assumed to execute independently and in any
order, and there is no guaranteed synchronisation mechanism between
them during a single kernel launch. !

This hierarchical grid structure makes it easy to map threads to data. For
example, when processing an image, one might assign a single thread to each
pixel, group threads for a tile of the image into a block, and have the entire
grid of blocks process the full image.

Hardware Architecture

This logical hierarchy maps onto the physical hardware of the GPU. A GPU is
composed of multiple Streaming Multiprocessors (SMs). A global scheduler
assigns thread blocks to available SMs for execution, and a key challenge in
GPU programming is keeping these SMs saturated with work.

Hopper GPUs and newer support Thread Block Clusters, which allows this to an extent

2.2 GPU Computing
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Each SM is a powerful parallel processor in its own right, containing several
components (there are more components, but they are omitted here as they
are largely irrelevant to the thesis):

* CUDA Cores: The basic arithmetic logic units (ALUs) that perform integer
and floating-point calculations.

» Warp Schedulers: Decides which group of threads gets to execute on
each clock cycle.

* Register File: The fastest storage on the GPU, holding thread-specific
data and intermediate results. While each thread has its own unlimited
logical set of registers, the physical register file is a limited resource
shared across all active threads on an SM.

» Shared Memory/L1 Cache: A low-latency memory space used for user-
managed data sharing within a thread block.

* Load/Store Units: Manage the movement of data between memory
spaces.

Threads are not only grouped into blocks but are also managed by the SM in
groups of 32 called warps. A warp is the fundamental unit of scheduling on the
GPU. All 32 threads in a warp execute in a Single-Instruction-Multiple-Thread
(SIMT) fashion, meaning they run in lockstep and execute the same instruction
at the same time. This SIMT execution model is the root cause of some of the
most important performance considerations in GPU programming.

Memory Hierarchy

Performance in GPU programming is directly linked to memory access pat-
terns. A deep understanding of the memory hierarchy is crucial for writing
efficient code, as the primary goal of many optimisations is to maximise the
use of fast memory and minimise traffic to slower memory.

* Registers: The fastest memory on the GPU. Each thread has its own
private registers for its local variables.
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* Shared Memory: A small, low-latency memory space shared by all
threads within a single block. It is essential for intra-block communica-
tion and is primarily used as a user-managed cache to avoid redundant
reads from the much slower global memory.

* Global Memory: The largest memory space on the GPU (the device’s
VRAM), accessible to every running thread. It has the highest latency
and serves as the medium for data transfer between the host and the
device. Access to global memory should be minimised and carefully
organised whenever possible.

2.2.5 Performance Considerations

The SIMT execution model of warps and the tiered memory hierarchy lead to
several critical performance considerations.

Access to global memory is often the most significant performance bottleneck.
To mitigate this, the GPU hardware attempts to coalesce memory requests.
This is a technique to improve memory bandwidth utilisation by servicing
multiple logical memory reads from a warp in a single physical memory
transaction. Modern NVIDIA GPUs have a cache line size of 128 bytes [@26]. If
the 32 threads in a warp access 32 consecutive 4-byte words in global memory,
this 128-byte request can be satisfied with a single DRAM burst, achieving
maximum bandwidth. Conversely, if the memory accesses are scattered and
random, the hardware may require up to 32 separate transactions, drastically
reducing performance.

A similar principle applies to shared memory, which is organised into 32
memory banks [@26]. Each bank can service one request per cycle. If all 32
threads in a warp access data in different banks, the entire request can be
satisfied in a single cycle. However, if multiple threads access the same bank,
a bank conflict occurs, and the accesses are serialised, reducing throughput.
Coalesced memory access guarantees there are no bank conflicts.

At a higher level, a modern GPU can execute multiple operations concurrently,
such as copying data from the host while a kernel is running. A key technique
for maximising utilisation is to use CUDA streams with async operations. A
stream is essentially a work queue that is processed in order. By using multiple
streams, a programmer can enqueue work on the GPU in smaller, independent
chunks. This allows the GPU scheduler to more aggressively overlap memory
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transfers with computation (latency hiding). For example, the GPU can be
copying the next chunk of data from the host while simultaneously processing
the current chunk, effectively hiding the latency of the PCIe bus transfer and
keeping the compute cores busy.

The physical resources on each SM are finite, and their management directly
impacts performance. While the programming model exposes a nearly un-
limited number of registers to each thread, in reality, there is still a limited,
physical register file that all threads active on an SM must share. High reg-
ister usage by a kernel can have two detrimental effects. First, if a single
thread requires more registers than the hardware can allocate, some of its
variables will "spill” into global memory, adding massive latency to every
access. Second, even if there is no spilling, if the total register demand of all
threads in a block is too high, the hardware scheduler will be forced to launch
fewer concurrent warps on the SM. This reduction in occupancy (the ratio
of active warps to the maximum supported warps) hurts the SM’s ability to
hide memory latency by switching to other warps, leading to lower overall
utilisation.

Finally, any operation that forces parallel threads to execute sequentially
undermines the benefits of parallelism and degrades performance. Branch
divergence is a classic example: since all threads in a warp execute the same
instruction, if-else statements can cause serialisation. If threads in a warp
take different paths, the hardware executes each path serially while idling
the threads on the other path. A similar and often more severe bottleneck
arises from atomic contention. When many threads in a block attempt to per-
form an atomic operation on the same memory location simultaneously, the
hardware is forced to serialise these requests. In cases of extreme contention,
the performance can degrade to the point where a traditional lock-based
critical section might even be faster. Therefore, minimising both control-flow
divergence and high-contention atomic operations is important for writing
efficient, scalable GPU code.
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2.3 Related Work

2.3.1 Two-Choice Filter

Recent work by McCoy et al. [21] introduced the Two-Choice filter (TCF), a
data structure designed specifically for high-throughput, parallel execution
on GPUs. The TCF shares the same high-level goal as the GPU-accelerated
Cuckoo filter presented in this thesis: to provide a deletable, space-efficient
filter optimised for the constraints of a GPU.

Structurally, the TCF is similar to a Cuckoo filter. It organises fingerprints
into blocks sized to fit within a GPU cache line (e.g., 128 bytes) to ensure high
memory locality. Like the Cuckoo filter, it maps each item to two candidate
blocks.

The fundamental difference lies in the insertion strategy. The authors argue
that the eviction chains inherent to Cuckoo hashing result in poor memory
coherence on GPUs, as a single insertion may trigger a cascade of random
memory reads and writes. To avoid this, the TCF uses a strategy derived from
the "power-of-two-choices" paradigm [2]. The insertion logic is as follows:

* Shortcut Optimisation: To insert an item, the TCF first checks the pri-
mary block. If its occupancy is below 75%, the item is inserted immedi-
ately without checking the second block.

* Load Balancing: If the primary block exceeds this threshold, the sec-
ondary blockis inspected, and the new fingerprint is placed in whichever
of the two blocks is currently less full.

* No Eviction: There is no kicking or eviction. If both candidate blocks
are completely full, the insertion into the main table fails.

This approach guarantees a fixed number of memory accesses per insertion.
However, because the blocks must be small enough to fit in GPU cache lines,
the statistical variance in load distribution increases, leading to premature
failures even when the total table is far from full. To address this, the TCF relies
on a backing store, a small, secondary hash table to catch these overflows.
This hybrid architecture allows the TCF to maintain a high overall occupancy
(up to 95%) while keeping the average case insertion logic simple.
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For its implementation, the TCF leverages CUDA Cooperative Groups to coor-
dinate threads within a warp for lock-free operations. Additionally, it offers a
"Bulk API" that pre-sorts items before insertion, further maximising memory
coalescing. In summary, the TCF prioritises a non-evicting strategy to max-
imise memory bandwidth, trading the complexity of eviction logic for the
architectural complexity of managing a secondary overflow structure.

Quotient Filter

The Quotient filter (QF) is a high-performance probabilistic data structure
that improves upon the Bloom filter by supporting dynamic deletions and
offering superior space efficiency in many configurations [3]. It compactly
stores small fingerprints using a scheme based on Robin Hood hashing [7]. For
a target false positive rate ¢, a QF uses approximately 1.053(2.125 + logy(1/¢))
bits per item, making it more space-efficient than a space-optimised Bloom
filter whenever e < 1/64 [21].

The core mechanism relies on splitting a p-bit hash into a ¢-bit quotient and an
r-bit remainder. The quotient determines an item’s "canonical slot" in a table of
27 slots, while the remainder is the value actually stored. If the canonical slot
is occupied, linear probing is used to find the next empty slot. All remainders
sharing the same quotient form a contiguous run, and sequences of runs form
clusters. Three metadata bits per entry (is_occupied, is_continuation,
is_shifted) encode the structure of these runs.

From a GPU design perspective, the Quotient filter presents a specific trade-off.
Its linear-probing nature results in high cache locality, a desirable property for
GPU architectures. However, the insertion process is fundamentally sequen-
tial. Inserting a new remainder often requires shifting a sequence of existing
remainders to maintain a sorted order. This shifting operation is difficult to
parallelise efficiently and often results in high thread divergence.

GPU-Based Counting Quotient Filter (GQF)

Early attempts to port the QF to GPUs, such as the work by Gelil et al. [16],
suffered from significant limitations, including a lack of counting support,
high space overhead, and limited scalability (supporting fewer than 226 items).
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To address these issues, McCoy et al. introduced the GPU-based Counting
Quotient filter (GQF) [21].

The GQF is a highly optimised implementation designed to overcome the
shortcomings of previous GPU quotient filters. It supports a comprehensive
feature set, including counting, deletions, and resizing. Notably, it also uses
an "even-odd" phased approach for bulk insertions to manage concurrency
without the complex locking schemes that typically bottleneck concurrent
linear probing.

Despite these advancements, the GQF is still bound by the architectural chal-
lenge of element shifting. While optimised for bulk operations, insertions
remain difficult to parallelise. The necessity of shifting elements implies
that insertion throughput is heavily dependent on the filter’s load factor
and the distribution of keys, potentially limiting performance compared to
bucket-based approaches like the Cuckoo filter which rely on localised atomic
swaps.

2.3 Related Work
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3.1

Implementation

This chapter details the design and implementation of the high-performance
GPU Cuckoo filter library. It documents the parallel algorithms developed
for insertion, lookup, and deletion, explaining how lock-free atomic oper-
ations are utilised to manage parallel accesses. Furthermore, it describes
advanced optimisation techniques, including sorted insertion, alternative
eviction strategies, and flexible bucket placement policies. It also presents
system-level extensions, including an Inter-Process Communication wrap-
per and a multi-GPU sharding mechanism. Finally, the chapter outlines the
comprehensive testing and verification strategies employed to ensure the
correctness of the implementation.

Challenges

Based on the GPU architecture and programming principles discussed in
Chapter 2, translating the Cuckoo filter algorithm into a performant parallel
implementation presents several specific technical hurdles. The following
challenges directly influenced the design and optimisation of the kernels
detailed in this chapter:

* Managing Concurrency and Race Conditions: A naive parallel imple-
mentation where thousands of GPU threads attempt to read and write to
the same buckets simultaneously would lead to race conditions and data
corruption. Designing an efficient, lock-free mechanism using atomic
operations to handle these concurrent memory accesses is one of the
primary challenges.

* Parallelising the Eviction Path: During an insertion, if both candidate
buckets are full, an existing item must be evicted and reinserted into
its alternate location. This process can cascade, leading to multiple
evictions. Parallelisation is complex, as it requires careful coordination
to ensure that threads do not interfere with each other’s operations or
create deadlocks.
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* Optimising for Coalesced Memory Access: The random-access nature
of Cuckoo filter operations can lead to scattered, uncoalesced memory
accesses, which severely degrade performance. Developing strategies
like data sorting to improve memory locality is essential.

* Balancing Occupancy and Register Pressure: Achieving a high and
balanced occupancy across the filter is key to its space efficiency. How-
ever, complex insertion logic can increase the number of registers used
per thread. High register usage can limit the number of active warps on
an SM, thereby reducing occupancy and the hardware’s ability to hide
memory latency.

Data Structure Design

The design of the GPU-accelerated Cuckoo filter emphasises compile-time con-
figuration and a memory layout optimised for cache-friendly access patterns.
This section details these design choices, from the high-level configuration
structure down to the public-facing APIL.

Compile-Time Configuration

To maximise performance by allowing the compiler to generate highly spe-
cialised code, the filter’s core parameters are defined at compile-time as tem-
plate parameters. They are consolidated into a single configuration structure,
CuckooConfig, which provides a clean and explicit way to instantiate the
filter. The primary configuration options are:

* bitsPerTag: Defines the size of each fingerprint in bits. Has to be 8, 16,
or 32.

» bucketSize: Specifies the number of fingerprints stored in each bucket.
A smaller bucket size generally leads to a lower false positive rate but
can negatively impact performance and overall occupancy. A default of
16 was chosen through performance testing (See Section 4.3.1).

* maxEvictions: Sets the maximum number of evictions a single thread
is allowed to perform during an insertion attempt before it gives up and
reports a failure. The default value of 500 was taken from [11].
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* blockSize: Configures the thread block size for the internal CUDA
kernels. This parameter can be tuned to optimise GPU occupancy for
different hardware architectures. A default of 256 was chosen through
empirical testing.

* AltBucketPolicy: A class which encapsulates the logic for hashing
items, calculating the required number of buckets, and deriving an
item’s alternate bucket. The default implementation uses the standard
XOR-based partial-key Cuckoo hashing, but alternatives based on the
"Additive and Subtractive" Cuckoo filter [18] and an offset-based version
[34] have also been implemented to demonstrate this flexibility (See
Sections 3.4.3 & 4.3.3).

* evictionPolicy: The policy used to handle insertions into full buckets.
The default implementation employs a Breadth-First Search (BFS) strat-
egy. Unlike the traditional greedy (DFS) approach which immediately
evicts a random victim, the BFS policy first scans the alternate buckets
of the existing items to find an empty slot. This strategy minimises the
length of eviction chains and reduces global memory traffic (See Sections
3.4.2 &4.3.2).

* WordType: Specifies the underlying integer type used for atomic op-
erations and fingerprint storage. The default is uint64_t, which is
generally optimal for modern GPU architectures. However, this can be
reconfigured (e.g., to uint32_t) to align with specific hardware char-
acteristics regarding atomic throughput. A benchmarking utility is pro-
vided to help users determine the optimal setting, which is primarily
useful in cache-resident workloads.

Throughout the implementation, static assertions are used to enforce impor-
tant invariants at compile time, such as ensuring that certain parameters are
powers of two to allow for efficient bitwise AND operations instead of more
costly modulo arithmetic.

Memory Layout and State Management

The filter’s primary data storage is a single, contiguous array of fixed-size buck-
ets allocated in the GPU’s global memory. To maximise memory bandwidth
and avoid misaligned access, the internal layout is carefully structured:

3.2 Data Structure Design
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» Each bucket is composed of an array of 64-bit unsigned integer words.

* Fingerprints (tags) are tightly packed within these 64-bit words. For
example, a 64-bit word can hold eight 8-bit fingerprints or four 16-bit
fingerprints.

While this packed layout necessitates the use of bitwise shift and mask oper-
ations to extract individual fingerprints, the additional computational cost
of these operations is negligible compared to the latency of memory access,
making this a highly beneficial trade-off. Figure 3.1 visualises this hierarchical
memory layout.

Buckets Array

Bucket 0 Bucket 1 Bucket 2 Bucket 3 e Bucket n

Word 0 | Word1 | Word 2 | Word 3 (64 bits each)

FP, FP, FP, FP; FP, FP; FPs; FP;

0-7 8-15 16-23 24-31 32-39 40-47  48-55 56-63

Fig. 3.1: Memory layout of the Cuckoo filter. Data is hierarchically structured from
buckets to words, with fingerprints tightly packed into words.

Furthermore, this enables the use of SWAR (SIMD Within A Register) tech-
niques. Empty slots can be detected directly via bitwise zero-detection, while
tag matches are found by first broadcasting the query tag across a word,
XOR-ing it with the packed tags, and applying the same zero-detection [@1].
This eliminates the need for branching loops when scanning slots within a
word.

The filter’s state is maintained by a single global atomic counter that tracks
the total number of occupied slots. This counter resides in device memory
and is updated atomically by the insertion and deletion kernels. Its value is
only lazily copied to the host when an explicit query is made, minimising
host-device communication.
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3.2.3 Public API

The filter exposes a comprehensive public interface for easy integration. Two
sets of APIs are provided: a traditional C-style API that operates on raw device
pointers and item counts, and, as well as a set of overloaded methods that
accept thrust: :device_vector objects.

Initialisation

explicit CuckooFilter(size_t capacity)

The constructor takes a single argument for the desired capacity in terms
of the number of items. It guarantees that at least this many items can be
stored. Depending on the chosen AltBucketPolicy, the actual allocated
capacity may be larger. For example, the default XOR-based strategy requires
the number of buckets to be a power of two, so the requested capacity is
rounded up to the next suitable size.

Batch Insertion

size_t insertMany(const T* d_keys, const size_t n,
bool* d_output = nullptr)

This function attempts to insert a batch of n items from a buffer in device
memory pointed to by d_keys. It is the caller’s responsibility to ensure the
pointer is valid and the buffer is sufficiently large. If the optional d_output
buffer is provided, the success or failure of each individual insertion is re-
ported. The function returns the updated total number of occupied slots in
the filter after the insertion attempt.

Sorted Batch Insertion

size_t insertManySorted(const T* d_keys, const size_t n,
bool* d_output = nullptr)
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To address the performance penalties of random memory access, this variant
introduces a pre-sorting step. The algorithm computes bucket indices and
fingerprints, packs them, and sorts them before insertion begins. This ensures
that consecutive threads target contiguous memory regions.

Batch Lookup

void containsMany(const T* d_keys, const size_t n,
bool* d_output)

Performs a batch lookup for n items. The results are written to the d_output
device buffer, where the boolean at each index corresponds to whether the
item at the same index in d_keys was found.

Batch Deletion

size_t deleteMany(const T* d_keys, const size_t n,
bool* d_output = nullptr)

Performs a batch deletion of n items. If d_output is provided, it indicates
which items were successfully removed. The function returns the updated
total number of occupied slots in the filter after the deletion attempt.

State Management and Debugging

The following utility functions are provided for filter maintenance and verifi-
cation:

* void clear(): Resetsthe internal state of the filter by setting all buckets
and the occupancy counter to zero. This operation does not deallocate
any device memory.

» float loadFactor(): Returns the current load factor of the filter, cal-
culated as the number of occupied slots divided by the total capacity.
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3.3 Parallel Algorithms

3.3.1

The core of this thesis is the design of parallel algorithms for the Cuckoo filter’s
primary operations: insertion, lookup, and deletion. These algorithms are
designed to be launched as CUDA Kkernels, where many threads cooperate to
process batches of items simultaneously.

Insertion

The parallel insertion algorithm is designed to handle a large batch of items
in parallel, with each CUDA thread being responsible for inserting a single
item. The process for each thread is as follows:

1. Hashing and Key Generation: Each item is first hashed into a 64-bit
value using the xxHash64 algorithm, chosen for its high performance and
excellent statistical properties. This hash is split: the upper 32 bits derive
the fingerprint, and the lower 32 bits determine the primary bucket
index. Distinct hash parts are used to avoid fingerprint clustering. The
alternate bucket index is then calculated using the partial-key Cuckoo
hashing scheme (Section 2.1.4).

2. Direct Insertion Attempt: The thread checks the two candidate buckets.
To distribute items evenly and reduce contention on the first slots of a
bucket, the thread does not start scanning at index 0. Instead, it uses
the item’s fingerprint to calculate a pseudo-random starting word index.
It then iterates through the bucket’s words, wrapping around to the
beginning. For each word, it utilises a bitwise SWAR algorithm [@1] to
generate a mask of empty slots. If a slot is found, an atomic Compare-
And-Swap (CAS) attempts to insert the fingerprint.

3. Eviction Process: If both candidate buckets are full, the thread initiates
the eviction process. It randomly selects one bucket and a random occu-
pied slot within it. Then the existing fingerprint is atomically swapped
with its own. The evicted fingerprint becomes the new item to insert,
and the thread calculates its alternate bucket to continue the process.

4. Termination: The eviction loop continues until an empty slot is found
or a limit on the number of evictions is reached, triggering an insertion
failure.

3.3 Parallel Algorithms
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To maintain an accurate count of the total items in the filter without creating
a bottleneck on a single atomic counter, a hierarchical reduction is employed.
Each thread that successfully inserts an item contributes a +1. These values
are first summed efficiently at the warp level using shuffle instructions, then
aggregated at the block level using shared memory, and finally, a single atomic
addition per block is performed on the global counter in device memory.
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Algorithm 1 Parallel Insertion

1:
2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29: |

30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44: |

function INSERT(key)

h «+ HasH(key)

fp + FINGERPRINT(h)

i1 <+ PRIMARYINDEX(h)

i9 + ALTERNATEINDEX(i1, Tp)

// Phase 1: Try direct insertion

if TRYINSERT(i1, Tp) or TRYINSERT(i9, fp) then

_ return Success

// Phase 2: Eviction Chain

b «+ randomly pick i; or iy

tag «+ fp

for n = 1tomaxEvictions do

s < random slot index in bucket b

wordIdx « s/ tagsPerWord

slotIdx < s mod tagsPerWord

word «+ buckets[b][wordIdx]

// Atomically swap current tag with existing tag

repeat
evicted < EXTRACTTAG(word, slotIdx)
desired + REPLACETAG(woxd, slotIdx, tag)

until AToMicCAS(&buckets[b][wordIdx], word, desired)

// Try to insert evicted tag into its alternate bucket

tag «+ evicted

b « ALTERNATEINDEX(b, tag)

if TRYINSERT(buckets[b], tag) then

| return Success

// Table too full

// Caller will have to rebuild

return Failure

function TrRYINSERT(bucket, tag)

start « (tag mod bucketSize)/tagsPerWord
for i = 0 to wordsPerBucket —1 do

idXx < (start + i) mod wordsPerBucket
word « bucket[idx]

mask < ZEROMASK(word)

while mask is not 0 do

slot + FINDFIRSTSET(mask)

desired + REPLACETAG(word, slot, tag)
if ATom1cCAS(&bucket[idx], word, desired) then
_ return Success

// Reload on CAS failure

word « bucket[idx]

.| mask < ZEROMASK(word)

return Failure

3.3 Parallel Algorithms
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Lookup

The parallel lookup algorithm is a read-only operation optimised for mem-
ory access. Each thread calculates the fingerprint and two bucket indices.
Similar to insertion, the thread determines a random starting word based on
the fingerprint to avoid checking the same memory locations first for every

query.

The key optimisation is vectorised, non-atomic memory loads combined with
SWAR comparisons. Modern GPU hardware can load 128 bits (16 bytes) in a
single instruction. The kernel loads two 64-bit words simultaneously starting
from the randomised offset. It then broadcasts the query fingerprint and XORs
it with the loaded data to check for matches in parallel using constant-time
arithmetic, eliminating branching loops.

Algorithm 2 Parallel Lookup

1: function CoNTAINS(key)

2: h < HasH(key)

fp < FINGERPRINT(h)

11 < PRIMARYINDEX(h)

ig < ALTERNATEINDEX(i1, Tp)

// Check both buckets (read-only, no locking needed)
return FIND(i;, Tp) or FIND(iy, Tp)

8: function FIND(bucket, tag)

9: pattern < BROADCASTTAG(tag)
10: // Random start index aligned to 128-bit boundary
11: start « (tag mod bucketSize)/tagsPerWord
12: start < FLOORTOEVEN(start)
13: for i = 0 to wordsPerBucket —1 step 2 do

14: idx + (start + i) mod wordsPerBucket
15: w1, Wy +— LOADWORDS(bucket, idx)
16: // Use SWAR to check for matches in parallel
17: if HASZEROSEGMENT(w; ¢ pattern) or
HASZEROSEGMENT(w; ¢ pattern)
Ehen
18: return Success

19: _ return Failure
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3.3.3 Deletion

The parallel deletion algorithm leverages SWAR to locate and remove items
efficiently. Like the other operations, it iterates through the bucket in 64-bit
words, starting at a pseudo-random offset derived from the fingerprint.

The thread broadcasts the target tag and uses SWAR to find matches. If a
match is found, it attempts an atomic CAS to set the specific slot to EMPTY
(zero). If the CAS fails (due to concurrent modification), the thread reloads and
retries. This ensures thread safety without locking. The operation continues
until the item is removed, or the entire bucket has been scanned.

Algorithm 3 Parallel Deletion

1: function REMOVE(key)

2: h < HasH(key)

fp < FINGERPRINT(h)

11 < PRIMARYINDEX(h)

i9 < ALTERNATEINDEX(i1, Tp)

// Attempt to remove from either valid location
return TRYREMOVE(i;, Tp) or TRYREMOVE(i3, Tp)

o

function TRYREMOVE(bucket, targetTag)
9: start « (tag mod bucketSize)/tagsPerWord
10: pattern < BROADCASTTAG(targetTag)

11: for i = 0 towordsPerBucket —1 do

12: idx < (start 4 i) mod wordsPexrBucket

13: word + bucket[idx]

14: mask < ZEROMASK(word @ pattern)

15: while mask is not 0 do

16: slot + FINDFIRSTSET(mask)

17: desired < REPLACETAG(word, slot, EMPTY)
18: if ATomIcCAS(&bucket[idx], word, desired) then
19: _ return Success

20: // Reload on CAS failure

21: word + bucket[idx]

22: | mask « ZEROMASK(word & pattern)

23: | return Failure

3.4 Optimisation Techniques

Beyond the core algorithm design, some noteworthy optimisation strategies
were explored to further improve insertion performance, particularly in cases
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where the filter is too large to fit into the device’s L2 cache or under high load
factors.

Sorted Insertion

One version of the insertion algorithm was implemented to enhance mem-
ory locality. Before the main insertion kernel is launched, the items are first
packed into a temporary structure where the upper bits represent the primary
bucket index and the lower bits contain the fingerprint. This array is then
sorted in parallel on the GPU using CUB’s high-performance radix sort. Doing
this ensures that consecutive threads in the subsequent insertion kernel are
likely to be working on items that map to the same or nearby buckets. This
approach led to a measurable performance increase once the filter size far
exceeded the GPU’s L2 cache and memory bandwidth is not abundant, as the
random memory accesses of the standard approach were more heavily pe-
nalised. However, for filters that fit entirely within the L2 cache, the overhead
of the initial packing and sorting pass made this version considerably slower
and not worth using (see Section 4.3.4).

Alternative Eviction Strategy

The standard eviction process uses a greedy, depth-first-search (DFS) approach,
where a thread immediately follows the eviction chain of a single evicted
item. An alternative strategy was implemented to reduce the average length
of these chains. When an eviction is necessary, instead of picking one random
item to evict, the thread first inspects half the bucket at random. For each
candidate, it checks if its alternate bucket has an empty slot. If such a "safe"
eviction is found, the swap is performed, and the insertion completes in a
single step. If all candidates lead to full alternate buckets, the algorithm falls
back to the original DFS-style greedy eviction. This method was found to
have a negligible impact when inserting into an empty filter; but it provided a
moderate speed-up when inserting into a filter with a high load factor (e.g.,
70% or more), where long eviction chains are more common (see Section
4.3.2).
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3.4.3 Flexible Bucket Placement Policies

The standard partial-key Cuckoo hashing scheme relies on the XOR operation
to determine alternate bucket locations (i, = iy @ hash(fp)). For this to map
validly onto the buckets, the number of them must strictly be a power of
two [5]. This constraint introduces a significant memory footprint issue: if
a dataset requires slightly more capacity than 2", the filter must be sized to
27+ resulting in nearly 50% higher memory usage in the worst case.

To mitigate this over-provisioning, two alternative bucket placement policies
were implemented. These strategies allow for more granular sizing of the
filter, decoupling the capacity from powers of two.

Additive and Subtractive Cuckoo Filter (ASCF)

This policy is based on the work of Huang et al. [18] and relaxes the power-of-
two constraint by dividing the filter into two equal-sized blocks (requiring
only that the total number of buckets be even).

* Primary Index: The primary bucket i, is always mapped to Block 0.

* Alternate Index: The alternate bucket i, is located in Block 1. It is
calculated by adding a hash of the fingerprint to ; modulo the block
size.

* Inverse Calculation: To find the alternate bucket for an item currently
residing in Block 1, the logic is inverted: the fingerprint hash is sub-
tracted to map back to Block 0.

This arithmetic symmetry replaces the bitwise symmetry of XOR, allowing
the filter to grow linearly in steps of two buckets rather than exponentially.

Offset-Based Cuckoo Filter

The second policy, derived from the work of Schmitz et al. [34], uses an
asymmetric offset combined with a "choice bit". In this scheme, one bit of the
stored fingerprint is reserved to indicate whether the item is currently in its
primary or alternate location.

3.4 Optimisation Techniques
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* If the choice bit is 0, the item is in its primary bucket i;. The alternate
bucket is calculated as:

io = (i1 + offset(fp)) mod m

« If the choice bit is 1, the item is in its alternate bucket i». The primary
bucket is calculated as:

i1 = (iz — offset(fp)) mod m

When an item is moved between buckets during an eviction, its choice bit is
flipped. This approach supports any number of buckets m, offering maximal
space efficiency. The trade-off is a reduction in the effective fingerprint size
by one bit (increasing the false positive rate slightly) and the need to update
the choice bit during evictions.

Evaluation

These policies trade computational simplicity for memory flexibility. In Sec-
tion 4.3.3, these three strategies (XOR, ASCF, and Offset-based) are bench-
marked against each other to verify potential performance costs from elimi-
nating the power-of-two constraint.

IPC Wrapper

To allow the GPU-accelerated Cuckoo filter to be used as a high-performance,
system-wide service, an IPC wrapper was developed. This wrapper exposes
the filter’s functionality through a client-server architecture, with a core focus
on enabling zero-copy data transfer for maximum efficiency.

The architecture is built upon two mechanisms: a shared memory queue
for communication and CUDA’s IPC API for data access. A fixed-size ring
buffer, chosen for its superior performance and simplicity, is created in a
POSIX shared memory segment to act as a command queue. The key is how
input data is handled. Instead of sending buffers through the queue, a client
performs the following steps:
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1. Allocate memory in its own GPU memory space for the batch of items to
be processed.

2. Obtain opaque memory handles to this device memory using
cudalpcGetMemHandle.

3. Place these handles inside a request message alongside other metadata
like the size of input and output buffers, which is then enqueued into
the shared memory ring buffer.

The server runs a single worker thread that continuously dequeues requests
from the command queue. For each request, the server’s thread uses
cudaIpcOpenMemHandle on the provided handle. This operation maps the un-
derlying physical memory, originally allocated by the client, into the server’s
own virtual address space. This yields a valid device pointer that the server
can use to launch kernels and read the input keys directly, thereby avoiding
the significant overhead of inter-process data copies.

The queue is blocking by design, meaning a client attempting to enqueue a
request into a full queue will wait until a slot becomes available. On top of
this, the server supports both a graceful shutdown, where it stops accepting
new requests but processes all outstanding items, and a forced shutdown that
cancels all pending requests.

To simplify its use, a client library abstracts away the low-level IPC details.
An additional Thrust wrapper is also provided to allow for seamless interac-
tion with thrust: :device_vector. This architecture could be enhanced in
several ways in the future:

* The blocking communication model could be evolved into a fully asyn-
chronous interface, inspired by modern APIs like Linux’s io_uring, to
maximise throughput in high-concurrency scenarios.

 Support could be added for multiple worker threads managing filters
on different GPUs to enable further load balancing.

* The filter could be exposed over a network by leveraging technologies

like RDMA (Remote Direct Memory Access) to preserve the zero-copy
transfer properties.

3.5 IPC Wrapper
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Multi-GPU

To handle datasets that exceed the memory capacity of a single graphics
card, a multi-GPU version of the Cuckoo filter was implemented. This version
transparently partitions the data and workload across all available devices,
presenting a unified interface to the user. This approach, however, necessitates
a shift in the public AP, as the input and output buffers must now reside in
host memory to accommodate their potentially massive size.

Architectural Design

The core design choice was to instantiate a completely independent Cuckoo
filter instance on each GPU, each managing its own dedicated device mem-
ory. While a single, logically distributed filter was considered, the practical
overhead of managing eviction chains across the high-latency interconnect
between GPUs was deemed prohibitive, as it would severely compromise
insertion performance.

To distribute items across these independent filters, a deterministic partition-
ing scheme is used. Each key is assigned to a specific GPU based on the result
of hash(key) mod n, where n is the number of GPUs. While a uniform hash
function would ideally distribute keys perfectly evenly, minor variances are
expected in practice. To account for this and prevent premature insertion
failures on one device, each GPU’s filter is allocated slightly more capacity
(2%) than its proportional share.

Data Distribution and Processing

Distributing the input data from the host to the correct GPU partition is a
complex challenge. A naive approach involving a single "primary" GPU that
partitions and distributes all data creates a severe load imbalance. Therefore,
a fully parallelised, multi-stage workflow was implemented leveraging the
Gossip library [19] for optimised communication:

1. Initial Data Scatter: The host-side input array is processed in large
chunks. Each GPU copies a distinct and proportional sub-chunk from
the host into its own device memory in parallel.
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3.6.3

3.6.4

2. Destination Calculation: Each GPU launches a lightweight kernel to
hash its local keys and determine the target GPU index for each item.

3. Topology-Aware Multisplit and Exchange: To redistribute the keys
to their correct owner GPUs, the implementation utilises the Gossip li-
brary. Unlike a standard all-to-all approach, Gossip performs an efficient
multisplit operation combined with a topology-aware data exchange.
It uses hints for the system’s interconnect topology (distinguishing be-
tween NVLink and PCle connections) to generate an optimised transfer
plan. This ensures that the data shuffling phase maximises the available
bandwidth and minimises contention on the interconnect.

4. Parallel Processing: Once the exchange is complete, each GPU holds all
the keys that belong to its partition. At this point, each GPU proceeds to
execute the standard single-GPU insertion, lookup, or deletion kernel on
its local data, fully in parallel with the other devices.

Result Consolidation

For operations that require an output array, the results generated on each
GPU must be consolidated and reordered to match the original input order.
To solve this efficiently, the Gossip library is again utilised to reverse the
exchange process, sending results back to the GPUs that originally held the
keys (pre-partitioning). This allows each GPU to perform a parallel scatter
operation, writing its portion of the results into the final host output buffer in
the correct order.

Overheads

The use of the Gossip library significantly mitigates the overheads associated
with manual partitioning. Previous approaches relying on thrust: :sort
and standard NCCL collectives often incurred high temporary memory costs
and sorting latency. Gossip’s optimised multisplit primitive reduces the auxil-
iary memory footprint and leverages low-level hardware features for faster
data movement. However, the fundamental latency of moving data off-chip re-
mains a bottleneck compared to single-GPU execution. The processable chunk
size must still be managed to ensure that the input buffers, the exchange
buffers, and the filter itself fit within device memory simultaneously.

3.6 Multi-GPU
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Testing and Verification

To ensure the correctness and reliability of the implementation, a comprehen-
sive verification strategy was employed. This strategy combines fine-grained
unit tests to validate individual components with end-to-end empirical tests
designed to confirm the functional correctness and theoretical properties of
the final software artifacts. The following sections detail the methodologies
used for unit testing and the empirical validation of the single-GPU filter, the
IPC wrapper, and the multi-GPU implementation.

Unit Testing

The Googletest framework is utilised to implement a comprehensive suite of
unit tests. These tests are designed to validate the correctness of individual
components in isolation. The test suite covers common use cases and known
edge cases (such as empty inputs, full filters, and operations on zero-capacity
filters). This low-level validation provides a strong foundation of correctness
upon which the larger system is built.

Functional and Empirical Verification

Beyond unit tests, a dedicated test binary was created for each primary output
artifact to empirically verify its end-to-end functionality. A standardised
test flow was developed to rigorously validate the correctness of the filter
implementations. This procedure was then adapted for the specific contexts
of the single-GPU, IPC, and multi-GPU versions.

Standard Verification Procedure

The core empirical validation follows a standardised, multi-stage procedure
using random 64-bit integer keys:

1. Insertion: Random keys from the range [0, 232 — 1] are inserted into an
empty filter until a specified target load factor is reached.
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2. No-False-Negatives Test: A query is performed for all the previously
inserted keys. The test passes only if every key is successfully found,
confirming that no false negatives have occurred.

3. False Positive Rate Measurement: The empirical false positive rate
is measured by querying one million distinct keys known not to be in
the filter (drawn from the disjoint range [232,2%* — 1]). The observed
rate of positive matches is then calculated and compared against the
theoretically expected rate to ensure it falls within an acceptable margin.

4. Deletion Correctness and Stability Test: Half of the initially inserted
items are deleted. A subsequent query for the entire original set of keys
is then conducted to verify three conditions:

» All non-deleted items must still be found.
» The vast majority of deleted items must no longer be found

* The rate of any remaining positive hits for the deleted items must
be statistically consistent with the filter’s theoretical false positive
rate.

Single-GPU Filter Verification

The core single-GPU filter implementation was subjected to the standard veri-
fication procedure outlined above. The test binary for this version operates
directly on device-side data buffers, providing a controlled environment to
validate the correctness of the CUDA Kkernels on a single device.

IPC Wrapper Verification

The IPC wrapper is validated using a dedicated test binary designed to operate
in one of two modes: as a server or as a client. The procedure is conducted
by first manually launching an instance of the binary in server mode. Subse-
quently, a separate instance is launched in client mode, which then spawns
multiple internal threads to concurrently send batches of requests to the
running server. This test serves as an empirical proof-of-concept for the IPC
mechanism, validating the end-to-end communication, command queuing,
and zero-copy data transfer.

3.7 Testing and Verification
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Multi-GPU Verification

The multi-GPU implementation was also validated against the standard verifi-
cation procedure. The test binary for this artifact allows for command-line
configuration of the filter’s capacity and the number of GPUs to utilise. A key
difference from the single-GPU test is that all input and output data buffers
reside in host memory. This setup rigorously exercises the entire data pipeline:
from the initial scatter from the host, through the inter-GPU data exchange
via Gossip, to the final consolidation of results back to the host. The tests are
specifically designed to run on datasets that exceed the memory capacity of a
single GPU, thereby validating the primary use case of this implementation.
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4.1

Evaluation

The performance of the GPU-accelerated Cuckoo filter is evaluated to demon-
strate its throughput, scalability, and resource efficiency. This chapter details
the experimental setup, the baselines used for comparison, and the analysis
of the results across various metrics.

Experimental Setup

The performance evaluation was conducted on two distinct hardware config-
urations to analyse how different memory architectures impact the scalability
of the filters.

» System A (GDDR7): An AMD EPYC 7713P (64 cores) paired with an
NVIDIA RTX PRO 6000 Blackwell GPU featuring 96 GB of GDDR7 memory
(1.8 TB/s). The system runs AlmaLinux 10.1 with NVIDIA driver 580.95.05
and CUDA 12.9.86.

» System B (HBM3): An NVIDIA GH200 Grace Hopper system with 72
ARM Neoverse V2 cores and an H100 GPU featuring 96 GB of HBM3
memory (3.4 TB/s). The system runs Ubuntu 24.04.3 with NVIDIA driver
580.105.08 and CUDA 13.0.88.

It is important to note that these systems are not compared head-to-head to
determine a single "winner". Rather, they serve as complementary testbeds to
isolate architectural bottlenecks. While System B provides significantly higher
memory bandwidth (HBM3 vs. GDDR?7), System A features approximately 50%
more CUDA cores. This disparity is important for the analysis: it allows for
the differentiation between compute-bound and memory-bound algorithms.
Specifically, performance gains on System A indicate a compute bottleneck,
whereas scaling on System B confirms a memory bandwidth bottleneck.

All performance tests use 16-bit fingerprints (with equivalent space allocation
for the Blocked Bloom filter) and random 64-bit integers as input keys.
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Reference Implementations

To provide a comprehensive analysis, the proposed GPU Cuckoo filter is com-
pared against the following data structures:

* GPU Blocked Bloom filter: Sourced from the cuCollections library, serv-
ing as a high-performance baseline for an append-only filter. [25]

* Original CPU Cuckoo filter: The reference implementation from the
original 2014 paper by Fan et al. [11].

+ Partitioned CPU Cuckoo filter: A variant [33] utilising multithreading
(one thread per partition) to maximise CPU throughput without the over-
head of SIMD instructions, which were found to degrade performance
in this specific context. Note that this filter was excluded from the Sys-
tem B (ARM-based) benchmarks, as it has a hard dependency on x86-64
intrinsics that prevents compilation.

* Bulk Two-Choice filter (TCF): A modern, GPU-focused AMQ data struc-
ture that serves as a direct competitor. [21]

* GPU Counting Quotient filter (GQF): A highly space-efficient prob-
abilistic data structure sourced from the same study as the TCF. This
implementation supports counting and resizing on top of the other op-
erations. [21]

Evaluation Metrics

The implementations are assessed using the following metrics:

* Throughput: Measured for insertions, lookups, and deletions and is
evaluated under two distinct conditions (Section 4.2.1):

- L2-Resident: A filter size small enough to fit entirely within the
GPU’s L2 cache.

— DRAM-Resident: Alarger filter size that necessitates global memory
access.
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» False Positive Rate (FPR) and Trade-offs: The empirical FPR is mea-
sured to verify adherence to theoretical bounds. Furthermore, a com-
parative analysis is performed to determine the maximum achievable
throughput for each filter when constrained to specific target false posi-
tive rates (Section 4.2.2).

* Cache Efficiency: L1 and L2 cache hit rates are measured to evaluate
memory locality (Section 4.4.1).

* Hardware Utilisation: Resource usage is analysed as a percentage of
the theoretical peak throughput ("Speed of Light") for compute, DRAM
and cache bandwidth (Section 4.4.2).

4.2 Performance Characterisation

4.2.1

This section establishes the baseline performance of the filter, analysing both
raw throughput across different memory hierarchies and the reliability of
the structure regarding false positive rates.

Throughput Analysis

The raw throughput of the filters is measured in millions of operations per
second (MOPS). To understand the impact of the memory hierarchy, each
operation is evaluated under two distinct conditions: a small filter (n = 222,
approx. 4.2 million items) that fits entirely within the L2 cache, and a large
filter (n = 2%, approx. 268 million items) that resides in DRAM. For all fig-
ures in this section, the left plot corresponds to System A and the right plot
corresponds to System B.

The specific speedup multipliers cited throughout this section represent the
performance on System B with an 80% target load factor as well as positive
lookups.

4.2 Performance Characterisation

45



46

Insert Performance (n = 222) (GDDR7) Insert Performance (n = 222) (HBM3)

WM

/s e N | s vt O T

04 s 04 056
Load Factor Load Factor ~8- GPU Cuckoo

Insert Performance (n = 22°) (GDDR7) Insert Performance (n = 22°) (HBM3) pit

Throughput [M ops/s]

-8~ Blocked Bloom
~8~ CPU Cuckoo

4~ Partition
=k~ TCF

e,

ST e

Throughput [M ops/s]

04 06 o8 ¥ 04 06
Load Factor Load Factor

Fig. 4.1: Insertion Performance. Top: L2-Resident, Bottom: DRAM-Resident
Insertion Performance

The insertion results for both systems are presented in Figure 4.1.

The GPU Cuckoo filter demonstrates exceptional competitiveness, effectively
bridging the gap between append-only and dynamic data structures. Its
insertion logic, relying on random atomic compare-and-swap operations,
contrasts with the simpler, linear write patterns of the Blocked Bloom filter.

L2-Resident: When the filter fits in cache, the Cuckoo filter achieves a signif-
icant fraction (60%) of the Blocked Bloom filter’s throughput while far sur-
passing all other dynamic filters. Specifically, it performs 6.3 x faster than the
TCF and 585 x faster than the GQF, verifying that the GQF’s complex element-
shifting logic incurs a massive penalty in high-throughput, low-latency scenar-
ios. The massive parallelism also yields a 360x speedup over the sequential
CPU implementation.

DRAM-Resident: For large datasets, the Cuckoo filter scales strongly with
memory bandwidth. Throughput increases significantly when moving from
GDDR7 to HBM3, confirming that the algorithm successfully saturates the
memory bus. In contrast, the TCF and GQF show stagnant or regressive per-
formance on the faster HBM3 system. Consequently, the Cuckoo filter is 1.9x
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faster than the TCF and 9.6x faster than the GQF. The ability to saturate HBM
allows the GPU implementation to widen the gap against the CPU baseline
even further, achieving a 583 x speedup.

Lookup Performance

Query performance, shown in Figure 4.2, highlights the impact of the Cuckoo
filter’s bucket layout and short-circuiting capabilities.
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Fig. 4.2: Query Performance. Top: L2-Resident, Bottom: DRAM-Resident. Note the
consistent gap between positive lookups (solid lines) and negative lookups
(dashed lines) for the GPU Cuckoo filter.

The Cuckoo filter exhibits a distinct performance profile based on the query
result. Positive lookups are highly efficient, due to the large bucket size (b = 16)
most items reside in their primary bucket, allowing the query to complete
with a single memory transaction. Negative lookups on the other hand have
their throughput roughly halved because the algorithm must always check
both candidate buckets.

L2-Resident: In the cache-resident scenario, this efficiency allows the Cuckoo
filter to outperform the append-only Blocked Bloom filter by 1.4x. When
compared to other dynamic structures, the lead is even more pronounced: it

4.2 Performance Characterisation
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is 42x faster than the TCF and 6 x faster than the GQF. The GPU version of the
Cuckoo filter is also 974 x faster than the CPU version.

DRAM-Resident: When the workload becomes bound by global memory
bandwidth, the Cuckoo filter effectively matches the throughput of the Blocked
Bloom filter. At the same time it maintains a clear lead over the alternatives,
being 11.3x faster than the TCF and 2.6 x faster than the GQF. The GPU version
of the Cuckoo filter is also 1504 x faster than the CPU version.

Deletion Performance

Deletion performance (Figure 4.3) illustrates the most significant advantage of
the GPU Cuckoo filter. Note that the Partitioned CPU Cuckoo filter is excluded
from this comparison, as its reference implementation does not support item
deletion.
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Fig. 4.3: Deletion Performance. Top: L2-Resident, Bottom: DRAM-Resident. Note the
logarithmic scale.

L2-Resident: The Cuckoo filter is orders of magnitude faster than the compe-

tition. The low latency of the L2 cache allows the Cuckoo filter’s simple atomic
operations to run at a very high speed, exceeding the throughput of the TCF
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4.2.2

by 100x and the GQF by 273 x. This efficiency also yields a 356 x speedup over
the standard CPU implementation.

DRAM-Resident: Here, this gap narrows as global memory latency becomes
the dominant factor, yet the Cuckoo filter retains its leadership. It performs
35.3x faster than the TCF and 3.8 x faster than the GQF. The advantage over
the CPU remains massive, with a 559 x speedup. Despite the narrowing gap,
the Cuckoo filter remains the fastest option due to fundamental algorithmic
differences:

* Cuckoo filter: Deletion is a simple, localised atomic operation (CAS).

* GQF: Requires shifting elements within a run to maintain sorted order.
While efficient in bulk, this serial operation limits peak throughput.

* TCF: Requires complex coordination within cooperative groups to up-
date block state, which scales poorly compared to independent atomic
accesses.

False Positive Rate

Empirical Accuracy Analysis

To evaluate the reliability of the implemented filters, the empirical false posi-
tive rate was measured across a range of filter capacities. For each test, the
filters were populated to a constant 95% load factor using random keys. The
total memory size was varied from 2% to 22® bytes, allowing each implementa-
tion to optimise its internal layout within that fixed memory constraint. The
results are presented in Figure 4.4:

* Blocked Bloom filter: The Blocked Bloom filter demonstrates the highest
false positive rate among all tested structures, ranging from approxi-
mately 0.5% to 6%. This is a known characteristic of the blocked design:
partitioning the bit array into small, fixed-size blocks prevents the "av-
eraging" of hash collisions across the entire filter. Consequently, a few
heavily congested blocks can disproportionately skew the overall error
rate. It is notably the only filter where the false positive rate degrades
this much as the total memory size increases.

4.2 Performance Characterisation
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* Quotient filter Accuracy: The GQF exhibits the lowest false positive

rate among all candidates, maintaining an error rate below 0.002%. This
confirms the theoretical space efficiency of quotient filters, which handle
collisions via Robin Hood hashing and metadata encoding.

CPU vs. GPU Cuckoo filters: A distinction remains visible between the
CPU and GPU Cuckoo filter implementations. The CPU version achieves
a very low false positive rate, hovering near 0.005%. The GPU Cuckoo
filter; while still highly accurate, has a higher rate of approximately
0.045%. This difference is a direct consequence of the bucket size trade-
off discussed in Section 4.3.1. To maximise parallel throughput, the GPU
implementation uses a bucket size of 16, whereas the CPU versions use a
standard bucket size of 4. As established in Equation 2.8, a larger bucket
size directly increases the collision probability for a fixed fingerprint
size. On top of that, the partitioned Cuckoo filter has a similar clustering
effect to the Blocked Bloom filter, albeit to a much lesser degree. It is
important to note that, unlike the CPU versions, the GPU Cuckoo filter
allows for flexible bucket sizes to tune the false positive rate.

Comparison with TCF: The GPU Cuckoo filter significantly outperforms
the TCF regarding accuracy. The TCF has an error rate roughly an order
of magnitude higher (ranging between 0.35% and 0.55%). While the TCF
is more accurate than the Blocked Bloom filter, the Cuckoo filter and
GQF designs offer superior accuracy for this workload.
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False Positive Rate vs Memory Size
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Fig. 4.4: Comparison of False Positive Rates (FPR) versus total memory size for various
filter implementations at a 95% load factor.

Performance vs. Accuracy Trade-off

In real-world applications, filters are often chosen based on strict False Pos-
itive Rate requirements (e.g. < 1% or < 0.1%). To evaluate how the filters
perform under these constraints, a parameter sweep was conducted to iden-
tify the configuration that yields the highest throughput for a given target
FPR.

These tests were performed on System B (HBM3) with capacities of 222 (L2-
resident) and 2?® (DRAM-resident) slots. The CPU implementations are ex-
cluded from this comparison as their throughput is simply insufficient. To
represent a realistic workload where the presence of items is uncertain, the
query throughput is reported as a weighted average of positive and negative
lookups, with a 50% hit rate.

The results, visualised in Figure 4.5, highlight the strengths of the Cuckoo
filter as a general-purpose structure:

» L2-Resident Superiority: In the L2-resident scenario, the GPU Cuckoo
filter demonstrates exceptional efficiency. For target FPRs of < 10%, < 1%
and < 0.1%, it surpasses the Blocked Bloom filter in query throughput.

4.2 Performance Characterisation
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This indicates that when memory latency is neutralised by the cache,
the Cuckoo filter’s retrieval logic is computationally more efficient than
the multiple hashing and bitwise operations required by the Blocked
Bloom filter. Furthermore, the performance gap between the Cuckoo
filter and the other dynamic filters (TCF, GQF) widens significantly in
this scenario, as the latter struggle to fully utilise the L2 bandwidth due
to their complex internal synchronisation.

Baseline Comparison: As expected for the DRAM-resident case, the
Blocked Bloom filter generally offers the highest raw throughput due
to its linear memory access patterns. However, its inability to support
deletions rules it out for dynamic applications. Among the dynamic
filters, the Cuckoo filter remains the closest competitor to the Bloom
filter’s performance across all sizes.

Dynamic Operation Performance: While the GQF can match the Cuckoo
filter in query throughput for specific configurations, it suffers a catas-
trophic penalty in dynamic operations. Its insertion and deletion through-
puts are orders of magnitude lower due to the complex synchronisation
required to shift elements. Similarly, the TCF, while faster than the GQF
for updates, still lags significantly behind the Cuckoo filter in deletion
throughput.

Conclusion: The GPU Cuckoo filter emerges as the most robust and
well-rounded solution for high-throughput dynamic workloads. It is the
only tested data structure capable of maintaining high performance for
insertions, lookups, and deletions simultaneously, while satisfying strict
accuracy constraints.
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Fig. 4.5: Maximum achievable throughput for Insert, Query, and Delete operations
while adhering to strict False Positive Rate targets. Top: L2-resident, Bottom:
DRAM-resident. Note the logarithmic scale on the Y-axis.

Algorithmic Optimisations

To determine the optimal configuration for the GPU architecture, this section
isolates specific algorithmic design choices including bucket sizing, eviction
strategies, and memory layouts to measure their individual impact on perfor-
mance.

Optimal Bucket Size

The bucketSize parameter, defining the number of fingerprints stored in
each bucket, plays an important role in the filter’s overall performance. Test-
ing demonstrates that performance degrades at both the lower and upper
extremes of bucket sizing, necessitating a careful balance.
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Performance Trade-offs

* Small Buckets: Configuring the filter with very small buckets negatively

impacts performance. With fewer slots per bucket, the likelihood that a
primary bucket is full increases significantly. This increases the average
number of buckets that must be accessed and loaded from memory to
complete an operation, resulting in higher latency.

Large Buckets: Conversely, excessively large buckets introduce hardware-
level inefficiencies. If a bucket’s size exceeds the GPU’s cache line size,
fetching a single logical bucket requires multiple physical memory trans-
actions. This significantly increases the memory bandwidth used per
operation, as the number of cache lines that must be fetched scales with
the size of the bucket.

Optimal Configuration

The experiments in Figure 4.6 identify distinct optimal configurations for
insertion and lookup operations depending on the working set size. Note
that deletion is not included in this section, as its memory access pattern
(sequentially loading 64-bit atomic words) is identical to insertion.

* Insertion: A bucket size of 16 fingerprints was found to be the fastest con-

figuration in all tested scenarios. This size appears to offer the optimal
trade-off, providing enough slots to minimise eviction chains without
incurring the bandwidth penalty of multi-cache-line fetches.

Lookup (L2-Resident): When the filter is sized to fit entirely within
the GPU’s L2 cache, a bucket size of 8 fingerprints yields the highest
throughput. This is driven by instruction-level efficiency. A bucket of
this size can be represented as two 64-bit words or a single 128-bit vector.
This allows the entire bucket to be loaded into registers via a single
vectorised machine instruction, maximising the throughput of the L1/L2
cache hierarchy.

Lookup (DRAM-Resident): Once the filter size exceeds the L2 cache
capacity, the bottleneck shifts to global memory bandwidth. In this case,
a bucket size of 16 becomes favourable again. Since fetching data from
DRAM creates a significant latency penalty, it is more efficient to process
a larger "middle ground" bucket size.
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4.3.2
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Fig. 4.6: Normalised throughput of the GPU Cuckoo filter for different bucket sizes
on System A.

Eviction Policies

To evaluate the impact of the insertion strategy on performance and stability,
a comparative analysis was conducted between the standard DFS eviction
policy and the proposed BFS heuristic.

Experimental Setup

For this analysis and the subsequent evaluation of sorted insertion (Section
4.3.4), the experimental setup was expanded with a third hardware configu-
ration to provide finer-grained data on GDDR7 performance scaling:

» System C (GDDR?7): An AMD Ryzen 9 5900X (12 cores) paired with an
NVIDIA RTX 5070 Ti GPU featuring 16 GB of GDDR7 memory (0.9 TB/s).
The system runs NixOS 25.11 with NVIDIA driver 580.119.02 and CUDA
12.9.86.

The tests use a fixed capacity of either 222 (L2-resident) or 22® (DRAM-resident)
slots. To accurately measure performance in the critical high-load scenario,
the insertion workload is split based on the target load factor a. For each data
point, the filter is first pre-filled with 75% of the total items required to reach
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the target load (i.e., 0.75 - « - capacity). Subsequently, the remaining 25% of
items are inserted to reach the final target load «, and the throughput of this
second phase is recorded. This ensures that the measurement captures the
performance behaviour specifically as the filter transitions from a moderately
full state to the final target occupancy, effectively isolating the impact of the
eviction strategy.

Eviction Reduction Analysis

The premise of the BFS eviction policy is that by investing more effort to
search for a "local" empty slot, the filter can avoid triggering long, expensive
eviction chains. To validate this hypothesis, the average number of evictions
performed per inserted item was measured.

Figure 4.7 shows that the BFS policy successfully lowers the eviction rate
compared to the greedy DFS approach.

As the filter fills up, the DFS strategy (which picks a random victim immedi-
ately) sees a quick increase in evictions. In contrast, the BFS strategy delays
this spike significantly. By checking up to half the bucket before resorting to
an eviction, the BFS approach resolves many collisions locally.

This reduction in evictions directly translates to a reduction in global memory
writes, since every eviction saved is an atomic read-modify-write transaction
avoided.
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Fig. 4.7: Average number of evictions per insertion on System B.

Performance Analysis

The throughput impact of the BFS policy presents a trade-off between com-
putational complexity and memory bandwidth efficiency (avoiding global
memory accesses caused by evictions).

In the L2-resident scenario (Figure 4.8a), the standard DFS policy consistently
outperforms the BFS policy across all systems.

In this scenario, the latency penalty of an eviction (loading a new bucket)
is minimal. At the same time, the BFS policy incurs a higher instruction
overhead per step because it must perform atomic checks on up to half the
slots within the loaded buckets. In this bandwidth-abundant, low-latency
environment, the computational cost of these extra checks outweighs the
savings from reduced evictions, making the simpler greedy approach faster.

In the DRAM-resident scenario (Figure 4.8b), the performance dynamics
become highly dependent on the specific balance between compute resources
and memory subsystems:

* System A: On the RTX PRO 6000 Blackwell, the BFS policy offers negligi-
ble benefits. This system features the highest core count of all testbeds,
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and its massive parallelism allows the GPU to effectively hide the latency
of the sequential DFS memory accesses by aggressively switching be-
tween warps. Because the hardware is already mitigating the penalty of
the DFS chains via parallelism, the BFS strategy yields barely any gain.

System B: The HBM3-based GH200 shows the strongest relative im-
provement from the BFS policy. Despite having massive bandwidth, the
standard DFS policy is bottlenecked by the latency of pointer chasing.
The BFS policy breaks this dependency chain by resolving collisions
locally using the already-loaded cache lines. Since System B has fewer
cores than System A to hide this latency, converting the memory stalls
into local compute work results in a significant throughput increase
(~ 25%).

System C: On the consumer-grade GDDR7 card, the BFS policy is con-
sistently faster. Unlike System A, this GPU lacks the extreme core count
required to fully hide DFS latency and unlike System B, it lacks the mas-
sive bandwidth to brute force the problem. Here, the BFS policy wins
simply by conservation of bandwidth. As shown in Section 4.3.2, BES sig-
nificantly reduces the number of evictions. On a bandwidth-constrained
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device, avoiding these extra memory transactions translates directly to
higher throughput.

4.3.3 Impact of Bucket Policies

As detailed in Section 3.4.3, the standard XOR-based partial-key Cuckoo hash-
ing imposes a strict power-of-two constraint on the number of buckets. While
this allows for efficient bitwise arithmetic, it can lead to significant memory
over-provisioning (up to 2x) for datasets that do not align with powers of
two.

To evaluate the cost of flexibility, the standard XOR policy was benchmarked
against the AddSub (Additive/Subtractive) and Offset (Choice-bit) policies on
System B with a fixed load factor of 95%.

The results for both L2-resident and DRAM-resident scenarios are presented
in Figures 4.9 and 4.10.

Bucket Policy Comparison (n = 22?)
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Fig. 4.9: L2-Resident Performance of the various Bucket Policies on System B
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Fig. 4.10: DRAM-Resident Performance of the various Bucket Policies on System B

L2-Resident Performance

In the L2-resident scenario (Figure 4.9), the filters are primarily bound by
instruction latency and cache bandwidth. The results show that the XOR
policy maintains a notable performance advantage specifically for positive
queries, where it achieves approximately 34% higher throughput than the
alternatives.

The alternative policies require integer modulo operations to calculate bucket
indices, whereas the XOR policy utilises simple bitwise masking. In this low-
latency environment, the computational overhead of these modulo instruc-
tions becomes visible. Given that memory capacity is rarely a bottleneck for
small, cache-sized filters, the performance penalty of the alternative policies
outweighs the benefit of flexible sizing. Therefore, for small datasets, the
standard XOR policy remains the optimal choice.

DRAM-Resident Performance

In the DRAM-resident scenario (Figure 4.10), where performance is primarily
dictated by global memory bandwidth, things change:
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* AddSub Performance: The Additive/Subtractive policy is consistently
outperformed by the other policies. It is approximately 20% slower for
positive queries and slightly slower for the other operations. This sug-
gests that its specific calculation overhead or register pressure interact
poorly with the memory latency hiding mechanisms on the GPU.

» Offset Policy Viability: The Offset-based policy matches the perfor-
mance of the XOR baseline almost perfectly across all operations. Be-
cause the workload is memory-bound, the additional compute cycles
required for the offset calculation are effectively hidden by the DRAM
latency.

Conclusion

For massive, memory-bound datasets, the Offset policy is a highly attractive
alternative. It delivers throughput equivalent to the XOR baseline while
eliminating the power-of-two restriction, allowing users to fit significantly
larger datasets into a fixed VRAM budget (e.g., fitting a 5 GB filter into 6 GB of
VRAM, which would require 8 GB with the XOR policy). This memory saving
comes at the minor cost of a slightly increased false positive rate (due to the
choice bit reducing the effective fingerprint size by 1 bit), a trade-off that is
often acceptable for maximising capacity.

Sorted vs. Unsorted Insertion

To investigate the potential for enhancing insertion throughput by improving
memory locality, an alternative insertion strategy was implemented and
evaluated. This strategy, detailed in Section 3.4.1, pre-sorts the input keys by
their primary bucket index before launching the insertion kernel. The goal is
to maximise coalesced memory accesses by ensuring that adjacent threads
target the same or nearby buckets.

To strictly isolate the benefits of memory locality from the overhead of the pre-
processing step, a Presorted metric was also introduced. This metric measures
the throughput of the insertion kernel assuming the data has already been
sorted "for free", whereas Sorted reflects the end-to-end throughput including
the radix sort and packing overhead.
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Performance Characteristics

The performance impact of sorting was evaluated across all three test systems.
Figures 4.11, 4.12, and 4.13 illustrate the throughput comparison between the

standard unsorted approach and the sorted variants across a wide
input batch sizes.
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Fig. 4.12: Throughput comparison of sorted vs. unsorted insertion on System B
(HBM3)

Insertion Throughput: Sorted vs Unsorted

12000 1 =®- Unsorted
=®— Sorted (incl. sort)
=®— Presorted (excl. sort)

10000 1

8000 1

6000 1

4000 1

Throughput [M ops/s]

2000 1

2'17 2‘19 2'21 2'23 2'25 2'27
Capacity (elements)
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Impact on Throughput Curve

The comparison reveals a significant divergence between the cost of sorting
and the benefit of locality:

* Insertion Efficiency (Presorted): The Presorted case shows that im-
proved memory locality effectively mitigates the performance penalty
usually associated with DRAM-resident filters. While the unsorted through-
put collapses as soon as the filter exceeds L2 cache capacity, the presorted
insertion maintains a significantly higher and more stable throughput
profile.

» The Sorting Tax: The substantial gap between the Presorted and Sorted
lines highlights the extreme cost of the pre-processing step. For small,
L2-resident inputs, this overhead makes the sorted approach non-viable.
However, for large DRAM-resident inputs, the cost of sorting might be
justified through the avoidance of random memory access stalls

Architecture-Specific Behaviour

The speedup provided by pre-sorting depends heavily on the memory tech-
nology and bandwidth availability of the GPU.

* GDDR?7 Systems (A & C): On systems relying on GDDR?7, the benefits of
pre-sorting are massive. In the DRAM-resident scenario (> 22° elements),
the pure insertion kernel (excluding sort) achieves approximately 3x
higher throughput compared to the unsorted baseline. This confirms
that random memory accesses are a big bottleneck on these architectures.
However, when the sorting overhead is included, the net throughput
only matches or slightly exceeds the unsorted baseline at maximum
capacity.

« HBM3 System (B): On System B, the high-bandwidth memory already
absorbs much of the random access penalty inherent to the unsorted
approach. Consequently, while pre-sorting still yields a performance
improvement, the speedup is less dramatic. Because the speedup factor
is smaller; it fails to amortise the cost of the sort, resulting in a net loss
in total throughput (including sort) compared to the standard unsorted
method.
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Trade-offs and Limitations

The breakdown of sorted vs. unsorted performance leads to some conclusions
regarding viability:

* Overhead vs. Gain: While memory locality theoretically solves the
random-access bottleneck, the current cost of the sorting and packing
step is too high to realise these gains in an end-to-end pipeline. Unless
the sorting cost can be amortised over other operations, the standard
unsorted insertion remains superior for general use.

* Memory Overhead: The sorting process requires auxiliary buffers,
doubling the peak memory usage during insertion. This effectively
halves the maximum batch size.

4.3.5 Impact of Wider Memory Loads

With the introduction of the NVIDIA Blackwell architecture (Compute Capabil-
ity 10.0), new instructions have been added to the Parallel Thread Execution
(PTX) ISA to allow for wider memory transactions.! To evaluate the impact of
instruction-level parallelism on query throughput, a special case utilising the
256-bit non-coherent load instruction was added to the lookup kernel:

1d.global.nc.v4.u64 {%0, %1, %2, %3}, [%4];

This instruction fetches four uint64_t values in a single operation, bypassing
the L1 cache to access the L2 cache or global memory directly. This reduces
the total number of issued instructions required to fetch bucket data and
lowers pressure on the instruction pipeline.

Throughput Analysis

Figure 4.14 compares the query throughput of the standard 128-bit load
implementation against the optimised 256-bit variant on System A (Blackwell
architecture).

The results highlight two distinct scenarios:

INVIDIA PTX ISA Documentation: https://docs.nvidia.com/cuda/parallel-thread-
execution/index.html#data-movement-and-conversion-instructions-ld
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Query Speedup: 256-bit vs 128-bit Loads
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Fig. 4.14: Query speedup going from 128-bit to 256-bit loads on System A.

 L2-Resident: When the filter fits into the L2 cache (up until 22° elements),
the 256-bit implementation provides a consistent performance uplift of
up to 18%. By fetching entire buckets with fewer instructions, the kernel
reduces execution overhead, allowing the device to better saturate the
L2 bandwidth.

* DRAM-Resident: As the working set spills into global memory, the per-
formance advantage disappears. In this case, the workload becomes
strictly bound by DRAM access times. Regardless of whether the data is
requested via 128-bit or 256-bit instructions, the memory controller is
already saturated, and the instruction issue rate is no longer the bottle-
neck.

This shows that while the use of 256-bit vector loads offers a "free" perfor-
mance boost for L2-resident workloads on supported hardware by improving
instruction efficiency, it does not fix the memory bandwidth bottleneck of
large, DRAM-resident Cuckoo filters.
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4.4 Architectural Analysis

4.4.1

To validate the theoretical behaviour of the algorithms, this section analyses
low-level hardware metrics, including cache hit rates and compute utilisation,
using profiler data.

Cache Efficiency

To understand how each filter interacts with the GPU’s memory hierarchy,
the L1 and L2 cache hit rates were measured by profiling the relevant kernels
using NVIDIA Nsight Compute (ncu) on System B. While cache hit rate is not
a direct proxy for overall throughput, it provides insight into the memory
access patterns and architectural bottlenecks of each implementation. The
results for Insert, Query, and Delete operations are presented in Figures 4.15
and 4.16.

L1 Cache Analysis

A consistent trend across all operations is the exceptionally high L1 hit rate
(near 100%) for both the TCF and the GQF.

The TCF achieves this through a specific staging strategy. It utilises cooperative
groups to load entire blocks from global memory into shared memory. Once
the datais staged, the vast majority of operations occur within shared memory,
which does not interact with the L1 cache lookup pipeline. Consequently, the

only interactions with the L1 cache are the initial block loads and final writes.

Since these are performed as fully coalesced memory transactions by the
cooperative group, they result in a near-perfect L1 hit rate.

In contrast, the GQF achieves high L1 efficiency through extreme spatial and
temporal locality. The implementation assigns individual threads to manage
specific, contiguous regions of the filter. As a thread performs operations such
as linear probing or shifting elements within a run, it repeatedly accesses the
same small range of global memory addresses. This high reuse frequency
ensures that the relevant cache lines remain resident in L1, resulting in a
high hit rate despite operating directly on global memory.

4.4 Architectural Analysis

67



68

The Cuckoo filter, conversely, exhibits a moderate L1 hit rate (typically be-
tween 30% and 60%). While some lookups within the same bucket may be
served by the L1 cache, the fundamental algorithm requires threads to jump to
arbitrary locations in global memory. These random accesses frequently miss
the L1 cache, preventing the near-perfect rates seen in the locality-optimised
implementations.
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Fig. 4.15: L1 hit rate as a percentage on System B.

L2 Cache Analysis

The L2 cache hit rates provide a clear visualisation of the transition from a
cache-resident workload to a DRAM-resident workload. For the Cuckoo filter
and the Blocked Bloom filter, the L2 hit rate remains high (approximately 80%
to 90%) for smaller capacities. However, a sharp decline is observed once the
filter size exceeds 224 elements. This inflection point roughly corresponds to
the physical L2 cache size of the test GPU. The steep drop-off confirms that
beyond this point, every operation effectively incurs a global memory access,
explaining the shift in performance scaling discussed in Section 4.2.1.
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The GQF exhibits similar behaviour for its lookups. Because a GQF lookup
involves linearly scanning a cluster of slots in memory, it relies heavily on
the L2 cache to minimise latency. Once the filter grows too large, these linear
scans result in frequent cache misses, aligning its curve with that of the Cuckoo
and Bloom filters.

In contrast, the TCF and GQF (specifically for Insertion and Deletion) maintain
a consistently high L2 hit rate across all filter sizes. This stability indicates
that these algorithms interact with global memory far less frequently than
the Cuckoo or Bloom filters. Instead, they perform the vast majority of their
work, such as sorting items within a block or managing cooperative groups,
using internal registers and shared memory. While this results in high cache
statistics, it indicates that these filters are bound by the speed of the GPU’s
compute units and shared memory (SRAM), preventing them from utilising the
abundant DRAM bandwidth available on modern High-Bandwidth Memory
systems.
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Fig. 4.16: L2 hit rate as a percentage on System B. 4.4 Architectural Analysis
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4.4.2 Hardware Utilisation

70

To validate the architectural hypotheses regarding memory-bound versus
compute-bound behaviour, the resource utilisation of each filter was profiled
using NVIDIA Nsight Compute just like in Section 4.4.1. This analysis measures
the achieved throughput as a percentage of the GPU’s theoretical peak ("Speed
of Light") for three critical subsystems: Compute (SM), Cache (L1/L2), and
Global Memory (DRAM). The results are presented in Figures 4.17, 4.18, 4.19,
and 4.20.

Compute Utilisation

The SM throughput metrics, shown in Figure 4.17, reveal distinct execution
characteristics for the different algorithms. The Cuckoo and Blocked Bloom
filters exhibit a characteristic "hump" profile. When the filter fits within the L2
cache (up to 22 elements), compute utilisation rises steadily as the execution
is dominated by hash calculations and bitwise manipulation instructions.
However, once the capacity exceeds the L2 limit, compute utilisation drops
sharply. This decline occurs because the SMs begin to stall while waiting for
data from global memory, shifting the primary bottleneck from instruction
throughput to memory latency.

In contrast, the TCF shows a steady increase in compute utilisation as the
filter grows, eventually reaching high levels of SM saturation (up to 80%). This
confirms that the TCF is primarily compute-bound, spending the majority of
its cycles executing cooperative group logic and sorting operations within
shared memory rather than waiting on external memory. The GQF stands
out for consistently low compute utilisation, particularly for insertion and
deletion. This suggests it is bottlenecked by neither pure compute throughput
nor memory bandwidth, but likely by serialisation latency within threads,
such as branch divergence or dependency stalls.
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Cache Throughput

The L1 and L2 cache throughput metrics (Figures 4.18 and 4.19) mirror the

2% 27 21 B

Filter Capacity (elements)

cache hit rate findings from Section 4.4.1.

The Cuckoo and Blocked Bloom filters effectively utilise cache bandwidth up
to the L2 capacity limit, after which throughput declines as requests miss
to DRAM. In contrast, the TCF and GQF maintain slowly increasing cache
throughput regardless of filter size, reinforcing that their working set for

active operations remains largely resident in shared memory/L1.
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L1 Cache Throughput by Filter
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Fig. 4.18: L1 throughput as a percentage of peak performance on System B

L2 Cache Throughput by Filter
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Fig. 4.19: L2 throughput as a percentage of peak performance on System B
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DRAM Throughput

The DRAM throughput results, presented in Figure 4.20, provide definitive
confirmation of the scaling characteristics discussed in Section 4.2.1. For
the Cuckoo and Blocked Bloom filters, DRAM utilisation jumps significantly
once the filter size exceeds the L2 cache limit. Notably, the Cuckoo filter’s
insert operation utilises nearly 35% of the peak DRAM bandwidth, while
query operations reach over 60%. This confirms that these algorithms are
truly memory-bound for large datasets. Consequently, their performance is
directly tied to the available memory bandwidth, ensuring they will continue
to benefit from future hardware advancements like HBM3E and HBM4.

At the same time, the TCF and GQF show negligible DRAM utilisation (near 0%)
for insertion and deletion operations, regardless of filter size. This effectively
proves that these algorithms are unable to utilise the available global memory
bandwidth. Their performance is strictly limited by the speed of the on-
chip memory (SRAM). As a result, they are less likely to scale with future
improvements in DRAM technology compared to the memory-hungry Cuckoo
filter.

DRAM Throughput by Filter

Cuckoo Blocked Bloom

3

o5
€32
58

3 A

GQF

DRAM Throughput (% of Peak)
ol
o
-

217 219 221 223 225 227 217 219 221 223 925 227

Filter Capacity (elements)

4.20: Global Memory (DRAM) throughput as a percentage of peak performance
on System B.
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Scalability and Real-World Application

Finally, the evaluation moves beyond single-device micro-benchmarks to
assess the filter’s performance in distributed multi-GPU environments and in
a realistic bioinformatics application.

Scalability (Multi-GPU)

To evaluate the filter’s ability to scale beyond a single device, a specific set of
benchmarks was conducted on a multi-GPU server node. These tests focus
on two scalability metrics: Strong Scaling (speeding up a fixed-size problem)
and Weak Scaling (maintaining performance as problem size grows with
hardware).

Experimental Setup

For the evaluation of multi-device scalability, the experimental setup was
expanded with a fourth hardware configuration representing a high-end
enterprise cluster node:

» System D (HBM2E/NVLink): An AMD EPYC 7713 (64 cores) paired with
8x NVIDIA A100-SXM4 GPUs, each featuring 80 GB of HBM2E memory
(=~ 2 TB/s bandwidth). The GPUs are interconnected via NVLink 3.0, pro-
viding an aggregate bandwidth of 600 GB/s. The system runs AlmaLinux
8.10 with NVIDIA driver 580.95.05 and CUDA 12.8.61.

This configuration allows the Gossip library to leverage the high-bandwidth
NVLink interconnect for the All-to-All data exchange, significantly reducing
the communication latency during the partitioning phase.

Strong Scaling

Strong scaling measures how the execution time changes as the number of
GPUs increases while the total problem size remains fixed. Ideally, doubling
the number of GPUs should halve the execution time. For this test, the total
filter capacity was fixed at 23Y slots (approx. 1 billion items), distributed across
2,4, 6, or 8 GPUs.
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normalised execution time (lower is better), relative to the 2-GPU baseline.

The results in Figure 4.21 reveal distinct behaviours for different operations:

* Query and Delete: These operations show decent scaling. Moving from

2 to 8 GPUs reduces the execution time by approximately 50%. While
this is a noticeable speedup, it is not linear (ideal scaling would yield a
75% reduction). This indicates that the latency of the All-to-All exchange
via NVLink prevents perfect scaling when the work performed by each
GPU decreases.

Insertion: Insertion performance is largely flat, showing minimal im-
provement as GPUs are added. This suggests that for a fixed dataset of
this size, the insertion process is dominated by the communication and
partitioning phase (hashing keys, calculating destinations, and shuffling
data via Gossip) rather than the insertion kernel itself. As more GPUs
are added, the complexity of the All-to-All exchange increases, negating
the benefit of parallelising the insertion logic.

Weak Scaling

Weak scaling measures how throughput changes as the number of GPUs
increases while the workload per GPU remains fixed. Ideally, the normalised

4.5 Scalability and Real-World Application
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throughput should scale linearly with the number of GPUs (e.g., 8 GPUs should
provide 4x the throughput of 2 GPUs). For this test, the capacity was fixed at
230 slots per GPU, meaning the 8-GPU test processed a massive dataset of 233
slots (over 8 billion items).
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Fig. 4.22: Weak Scaling on System D with a fixed capacity of 2%° slots per GPU. The Y-
axis represents normalised total throughput relative to the 2-GPU baseline.

Figure 4.22 illustrates the results:

* Sub-linear Scaling: While total throughput increases with more GPUs,
it does not scale linearly. At 8 GPUs, the system achieves roughly 1.95x
the query/delete throughput and only 1.2 the insertion throughput.

+ Communication Bottleneck: This behaviour confirms that even with
NVLink, the system is bottlenecked by the interconnect. In a distributed
Cuckoo filter, every GPU must communicate with every other GPU. As the
number of GPUs increases, the density of the All-to-All communication
pattern grows, introducing latency that limits the aggregate throughput.

Conclusion
The multi-GPU implementation effectively enables the processing of massive

datasets that exceed single-device memory limits (up to 8+ billion items on
8 A100s). However, it is primarily a capacity scaling solution rather than a
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throughput scaling solution. For datasets that fit within a single GPU, the
single-GPU implementation remains far more efficient due to the lack of
communication overhead.

Real-World Benchmark: Genomic K-mer Indexing

While synthetic benchmarks using uniformly distributed integers are use-
ful for showing algorithmic behaviour, real-world data can often present
challenges due to skewed distributions. To validate this, a benchmark was
conducted on genomic k-mer indexing as an important use case for approxi-
mate membership query structures in bioinformatics.

Background and Experimental Setup

A k-mer is a subsequence of length £ derived from a biological sequence, such
as DNA. In genomic analysis, counting and filtering k-mers is an important
step for tasks like genome assembly and error correction. Since DNA consists
of four bases (A, C, G, T), the total number of possible k-mers is 4%, which
grows rather quickly.

For this evaluation, the T2T-CHM13 [24, 32] dataset is used as the first complete
sequence of a human genome. The raw FASTA [29] data was pre-processed
using KMC 3 [20] to extract all distinct 31-mers (k = 31). To optimise memory
usage and processing speed, the text-based k-mers were packed into a 2-bit-
per-base binary representation, compressing the dataset roughly by a factor
of four and allowing each 31-mer to fit within a single uint64_t.

The resulting dataset is approximately 20 GB in size (packed), which is suffi-
cient to effectively saturate the 96 GB of VRAM on System B. All filters were
tested for insertion, positive lookup, and deletion (when supported).

Performance Analysis

The throughput results for the k-mer benchmark are presented in Figure
4.23.

The results confirm that the Cuckoo filter’s high performance translates well
to real-world workloads:

4.5 Scalability and Real-World Application
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Fig. 4.23: Throughput comparison for inserting, querying, and deleting 31-mers from
the full T2T-CHM13 human genome on System B.

* Query Performance: While the Cuckoo filter does not fully match the
Blocked Bloom filter, it maintains a notable lead over other dynamic
alternatives. It is 68% faster than the GQF and 10.3x faster than the TCFE.

* Insertion Performance: While the Cuckoo filter trails the append-only
Blocked Bloom filter in this high-bandwidth scenario, it remains the
fastest among dynamic data structures, outperforming the TCF by 2.4 x
and the GQF by 6.2x.

* Deletion Performance: In deletion throughput, the Cuckoo filter demon-
strates superior performance. It is 2.1 x faster than the GQF and 39.2x
faster than the TCE.

Conclusion

This benchmark demonstrates that the GPU Cuckoo filter is a highly versatile
data structure for real-world applications. While the Blocked Bloom filter
remains the throughput leader for read-only or append-only tasks, the Cuckoo
filter is the only tested solution that delivers a consistent high performance
across all operations. This makes it particularly valuable for workloads that
involve a good mix of insertions, lookups, and deletions.
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Conclusion and Future Work

Summary of Contributions

This thesis presented the design, implementation, and evaluation of a high-
performance Cuckoo filter accelerated by Graphics Processing Units. While the
initial objective was simply to achieve a significant speedup over traditional
CPU-based implementations, the efficiency of the proposed parallel algorithms
prompted a change in goals. The focus expanded to a new target: challenging
the throughput dominance of append-only filters.

The resulting work demonstrates that the trade-off between dynamic capa-
bilities and raw performance is not inevitable. By effectively closing the gap
with the Blocked Bloom filter, this thesis establishes that dynamic, deletable
filters can be deployed in high-throughput environments without becoming a
system bottleneck.

The key contributions of this work are:

* High-Performance CUDA Library: A robust, header-only CUDA library
was developed. This library encapsulates the parallel algorithms for in-
sertion, lookup, and deletion, abstracting the complexity of GPU memory
management and atomic synchronisation. It allows users to configure
parameters at compile time for maximum efficiency.

 Architectural Optimisation: The Cuckoo filter was tuned for GPU hard-
ware, identifying a bucket size of 16 as the optimal trade-off between
memory bandwidth utilisation and eviction complexity as well as sup-
porting wider memory loads for the latest Blackwell GPUs.

» System Extensions: To facilitate real-world adoption, the filter was
extended with an IPC wrapper for zero-copy sharing and a multi-GPU
sharding mechanism to scale beyond the memory limits of a single
device.
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* Rigorous Evaluation: A comprehensive analysis was conducted across

different memory technologies (GDDR7 and HBM3). The results demon-
strate that the implementation successfully bridges the gap between
append-only and dynamic filters, offering update capabilities orders of
magnitude faster than existing alternatives while maintaining query
throughput competitive with the Blocked Bloom filter.

5.2 Key Findings

The evaluation yielded significant insight regarding the interaction between
AMQ data structures and modern GPU architectures:

* Memory Bandwidth Scalability: The Cuckoo filter is primarily memory-

bound. Unlike the Two-Choice filter or Quotient filter, which are limited
by shared memory latency and compute overhead, the Cuckoo filter’s
throughput scales linearly with global memory bandwidth. This makes
it uniquely positioned to benefit from hardware advancements like
HBMS3E and HBM4.

The Cost of False Positives: While the implementation achieves ex-
tremely high throughput, this comes at a cost. To maximise insertion
speed, the filter utilises larger buckets, which increases the false posi-
tive rate compared to CPU-based implementations (0.045% vs 0.005%).
However, this trade-off allows the filter to handle billions of mutations
per second, a feat unreachable by CPU-based alternatives.

Performance Parity: In scenarios where the working set fits within the
L2 cache, the GPU Cuckoo filter effectively matches the performance of
the append-only Blocked Bloom filter. This invalidates the traditional
assumption that one must sacrifice significant performance to gain dele-
tion capabilities.

5.3 Limitations

80

Despite the success of the implementation, certain limitations remain:
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* Insertion Performance at Capacity: As the filter approaches maximum
capacity (over 95%), the insertion throughput degrades significantly due
to long eviction chains. While the BFS eviction policy helps with this, the
fundamental algorithmic bottleneck persists.

* Insertion Failures: Unlike a Bloom filter, which always accepts new
items (at the cost of a rising false positive rate), a Cuckoo filter has a
non-zero probability of failing to insert an item entirely. This requires
the user to implement robust error handling, such as a fallback storage
mechanism or a trigger to resize and rebuild the filter.

» False Positive Rate Flexibility: The Cuckoo filter’s error rate is con-
strained to discrete steps determined by the available integer widths (8,
16, or 32 bits). This lacks the fine-grained control of a Bloom filter; where
the error rate can be adjusted arbitrarily by changing the number of
hash functions.

5.4 Future Work

The work presented in this thesis opens several avenues for future research
and optimisation:

* Asynchronous APIs: The current IPC mechanism is blocking. Future
iterations could implement an asynchronous command queue, similar to
io_uring, to allow clients to submit batches of requests without stalling,
further maximising GPU occupancy.

 Variable-Length Fingerprints: Investigating methods to support variable-
length fingerprints within the fixed-bucket structure could allow users to
fine-tune the space-accuracy trade-off without the coarseness of jumping
from 16-bit to 32-bit tags.

* Integration into High-Throughput Systems: While micro-benchmarks
demonstrate raw speed, the ultimate validation would be integrating
the library into real-world systems characterised by high churn. De-
ploying the filter within network intrusion detection systems, streaming
analytics pipelines, or GPU-accelerated database engines would provide
valuable insight into its impact on end-to-end application latency and
throughput.
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* Robustness Against Churn: Future work could explore hybrid architec-
tures, such as attaching a small "overflow stash" or secondary table, to
catch items that fail the eviction chain. This would significantly improve
stability and reliability for non-terminating, dynamic workloads.

* Optimisation for Heterogeneous Systems: With the increasing preva-
lence of heterogeneous systems like the NVIDIA GH200, future work
could investigate optimising the Cuckoo filter for such architectures.
Specifically, leveraging unified memory to lower the cost of CPU-to-GPU
data transfers could yield significant performance improvements.
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